The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] system(3183hit)

981-1000hit(3183hit)

  • Autonomous Decentralized Community Wireless Sensor Network Architecture to Achieve Timely Connection for Online Expansion

    Md. Emdadul HAQUE  Shoichi MURAKAMI  Xiaodong LU  Kinji MORI  

     
    PAPER-Community

      Vol:
    E94-B No:1
      Page(s):
    2-9

    Wireless sensor networks represent a new data collection paradigm in which expandability plays an important role. In a practical monitoring environment, for example, food factory monitoring system, sensor relocations and reorganizations are necessary with reorganization of production lines and starting of new production lines. These relocations sometime make congestion in some area of the network. In this dynamic changing environment online expansion is a challenging problem for resource constraint network. This paper proposes a two-tier autonomous decentralized community architecture for wireless sensor network to solve the problem. The first layer consists of sensors and second layer consists of routers. In the architecture routers make community (a group of nodes mutually cooperate for a common goal is a community). The goal of this paper is to introduce the concept of sharing information among routers of the community to decrease sensor connection time for the network especially for the dynamic changing environment. Results show that our proposed technologies can reduce sensor connection time to achieve online expansion.

  • A Domain Partition Model Approach to the Online Fault Recovery of FPGA-Based Reconfigurable Systems

    Lihong SHANG  Mi ZHOU  Yu HU  Erfu YANG  

     
    PAPER-Nonlinear Problems

      Vol:
    E94-A No:1
      Page(s):
    290-299

    Field programmable gate arrays (FPGAs) are widely used in reliability-critical systems due to their reconfiguration ability. However, with the shrinking device feature size and increasing die area, nowadays FPGAs can be deeply affected by the errors induced by electromigration and radiation. To improve the reliability of FPGA-based reconfigurable systems, a permanent fault recovery approach using a domain partition model is proposed in this paper. In the proposed approach, the fault-tolerant FPGA recovery from faults is realized by reloading a proper configuration from a pool of multiple alternative configurations with overlaps. The overlaps are presented as a set of vectors in the domain partition model. To enhance the reliability, a technical procedure is also presented in which the set of vectors are heuristically filtered so that the corresponding small overlaps can be merged into big ones. Experimental results are provided to demonstrate the effectiveness of the proposed approach through applying it to several benchmark circuits. Compared with previous approaches, the proposed approach increased MTTF by up to 18.87%.

  • Improved Dictionary-Based Code-Compression Schemes with XOR Reference for RISC/VLIW Architecture

    Jui-Chun CHEN  Chang-Hong LIN  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E93-A No:12
      Page(s):
    2517-2523

    Embedded systems are constrained by the available memory, and code-compression techniques address this issue by reducing the code size of application programs. The main challenge for the development of an effective code-compression technique is to reduce code size without affecting the overall system performance. Dictionary-based code-compression schemes are the most commonly used code-compression methods, because they can provide both good compression ratio and fast decompression. We propose an XOR-based reference scheme that can enhance the compression ratio on all the existing dictionary-based algorithms by changing the distribution of the symbols. Our approach works on all kinds of computer architecture with fixed length instructions, such as RISC or VLIW. Experiments show that our approach can further improve the compression ratio with nearly no hardware, performance, and power overheads.

  • Superposition Coding Based Wireless Network Coding Scheme for Two-Way Cooperative Relaying

    Megumi KANEKO  Kazunori HAYASHI  Hideaki SAKAI  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3354-3361

    Recent advances in cooperative communication and wireless Network Coding (NC) may lead to huge performance gains in relay systems. In this context, we focus on the two-way relay scenario, where two nodes exchange information via a common relay. We design a practical Superposition Coding (SC) based NC scheme for Decode-and-Forward (DF) half-duplex relaying, where the goal is to increase the achievable rate. By taking advantage of the direct link and by providing a suboptimal yet efficient power division among the superposed layers, our proposed SC two-way relaying scheme outperforms the reference schemes, including the well-known 3-step DF-NC scheme and the capacity of 2-step schemes for a large set of SNRs, while approaching closely the performance bound.

  • Tradeoffs between Throughput and Fairness of Parallel Round Robin Scheduling in DAS

    Zhanjun JIANG  Dongming WANG  Xiaohu YOU  

     
    LETTER

      Vol:
    E93-B No:12
      Page(s):
    3530-3533

    Both multiplexing and multi-user diversity are exploited based on Round Robin (RR) scheduling to achieve tradeoffs between average throughput and fairness in distributed antenna systems (DAS). Firstly, a parallel Round Robin (PRR) scheduling scheme is presented based on the multi-user multiplexing in spatial domain to enhance the throughput, which inherits the excellent fairness performance of RR. Then a parallel grouping Round Robin (PGRR) is proposed to exploit multi-user diversity based on PRR. Due to the integration of multi-user diversity and multi-user multiplexing, a great improvement of throughput is achieved in PGRR. However, the expense of the improvement is at the degradation of fairness since the "best channel criteria" is used in PGRR. Simulations verify analysis conclusions and show that tradeoffs between throughput and fairness can be achieved in PGRR.

  • Combined Nyquist and Compressed Sampling Method for Radio Wave Data Compression of a Heterogeneous Network System Open Access

    Doohwan LEE  Takayuki YAMADA  Hiroyuki SHIBA  Yo YAMAGUCHI  Kazuhiro UEHARA  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3238-3247

    To satisfy the requirement of a unified platform which can flexibly deal with various wireless radio systems, we proposed and implemented a heterogeneous network system composed of distributed flexible access points and a protocol-free signal processing unit. Distributed flexible access points are remote RF devices which perform the reception of multiple types of radio wave data and transfer the received data to the protocol-free signal processing unit through wired access network. The protocol-free signal processing unit performs multiple types of signal analysis by software. To realize a highly flexible and efficient radio wave data reception and transfer, we employ the recently developed compressed sensing technology. Moreover, we propose a combined Nyquist and compressed sampling method for the decoding signals to be sampled at the Nyquist rate and for the sensing signals to be sampled at the compressed rate. For this purpose, the decoding signals and the sensing signals are converted into the intermediate band frequency (IF) and mixed. In the IF band, the decoding signals are set at lower center frequencies than those of the sensing signals. The down converted signals are sampled at the rate of four times of the whole bandwidth of the decoding signals plus two times of the whole bandwidth of the sensing signals. The purpose of above setting is to simultaneously conduct Nyquist rate and compressed rate sampling in a single ADC. Then, all of odd (or even) samples are preserved and some of even (or odd) samples are randomly discarded. This method reduces the data transfer burden in dealing with the sensing signals while guaranteeing the realization of Nyquist-rate decoding performance. Simulation and experiment results validate the efficiency of the proposed method.

  • A Censor-Based Cooperative Spectrum Sensing Scheme Using Fuzzy Logic for Cognitive Radio Sensor Networks

    Thuc KIEU-XUAN  Insoo KOO  

     
    LETTER

      Vol:
    E93-B No:12
      Page(s):
    3497-3500

    This letter proposes a novel censor-based scheme for cooperative spectrum sensing on Cognitive Radio Sensor Networks. A Takagi-Sugeno's fuzzy system is proposed to make the decision on the presence of the licensed user's signal based on the observed energy at each cognitive sensor node. The local spectrum sensing results are aggregated to make the final sensing decision at the fusion center after being censored to reduce transmission energy and reporting time. Simulation results show that significant improvement of the spectrum sensing accuracy, and saving energy as well as reporting time are achieved by our scheme.

  • Automatic Communication Synthesis with Hardware Sharing for Multi-Processor SoC Design

    Yuki ANDO  Seiya SHIBATA  Shinya HONDA  Hiroyuki TOMIYAMA  Hiroaki TAKADA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E93-A No:12
      Page(s):
    2509-2516

    We present a hardware sharing method for design space exploration of multi-processor embedded systems. In our prior work, we had developed a system-level design tool named SystemBuilder which automatically synthesizes target implementation of a system from a functional description. In this work, we have extended SystemBuilder so that it can automatically synthesize an area-efficient implementation which shares a hardware module among different applications. With SystemBuilder, designers only need to enable an option in order to share a hardware module. The designers, therefore, can easily explore a design space including hardware sharing in short time. A case study shows the effectiveness of the hardware sharing on design space exploration.

  • A Multi-Performance Processor for Reducing the Energy Consumption of Real-Time Embedded Systems

    Tohru ISHIHARA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E93-A No:12
      Page(s):
    2533-2541

    This paper proposes an energy efficient processor which can be used as a design alternative for the dynamic voltage scaling (DVS) processors in embedded system design. The processor consists of multiple PE (processing element) cores and a selective set-associative cache memory. The PE-cores have the same instruction set architecture but differ in their clock speeds and energy consumptions. Only a single PE-core is activated at a time and the other PE-cores are deactivated using clock gating and signal gating techniques. The major advantage over the DVS processors is a small overhead for changing its performance. The gate-level simulation demonstrates that our processor can change its performance within 1.5 microsecond and dissipates about 10 nano-joule while conventional DVS processors need hundreds of microseconds and dissipate a few micro-joule for the performance transition. This makes it possible to apply our multi-performance processor to many real-time systems and to perform finer grained and more sophisticated dynamic voltage control.

  • Web API Database Systems for Rapid Web Application Development

    Takeru INOUE  Hiroshi ASAKURA  Yukio UEMATSU  Hiroshi SATO  Noriyuki TAKAHASHI  

     
    PAPER

      Vol:
    E93-D No:12
      Page(s):
    3181-3193

    Web APIs are offered in many Web sites for Ajax and mashup, but they have been developed independently since no reusable database component has been specifically created for Web applications. In this paper, we propose WAPDB, a distributed database management system for the rapid development of Web applications. WAPDB is designed on Atom, a set of Web API standards, and provides several of the key features required for Web applications, including efficient access control, an easy extension mechanism, and search and statistics capabilities. By introducing WAPDB, developers are freed from the need to implement these features as well as Web API processing. In addition, its design totally follows the REST architectural style, which gives uniformity and scalability to applications. We develop a proof-of-concept application with WAPDB, and find that it offers great cost effectiveness with no significant impact on performance; in our experiments, the development cost is reduced to less than half with the overhead (in use) of response times of just a few msec.

  • Selecting Help Messages by Using Robust Grammar Verification for Handling Out-of-Grammar Utterances in Spoken Dialogue Systems

    Kazunori KOMATANI  Yuichiro FUKUBAYASHI  Satoshi IKEDA  Tetsuya OGATA  Hiroshi G. OKUNO  

     
    PAPER-Speech and Hearing

      Vol:
    E93-D No:12
      Page(s):
    3359-3367

    We address the issue of out-of-grammar (OOG) utterances in spoken dialogue systems by generating help messages. Help message generation for OOG utterances is a challenge because language understanding based on automatic speech recognition (ASR) of OOG utterances is usually erroneous; important words are often misrecognized or missing from such utterances. Our grammar verification method uses a weighted finite-state transducer, to accurately identify the grammar rule that the user intended to use for the utterance, even if important words are missing from the ASR results. We then use a ranking algorithm, RankBoost, to rank help message candidates in order of likely usefulness. Its features include the grammar verification results and the utterance history representing the user's experience.

  • On Synthesizing a Reliable Multiprocessor for Embedded Systems

    Makoto SUGIHARA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E93-A No:12
      Page(s):
    2560-2569

    Utilizing a heterogeneous multiprocessor system has become a popular design paradigm to build an embedded system at a cheap cost. A reliability issue, which is vulnerability to soft errors, has not been taken into account in the conventional IC (integrated circuit) design flow, while chip area, performance, and power consumption have been done. This paper presents a system design paradigm in which a heterogeneous multiprocessor system is synthesized and its chip area is minimized under real-time and reliability constraints. First we define an SEU vulnerability factor as a vulnerability measure for computer systems so that we evaluate task-wise reliability over various processor structures. Next we build a mixed integer linear programming (MILP) model for minimizing the chip area of a heterogeneous multiprocessor system under real-time and SEU vulnerability constraints. Finally, we show several experimental results on our synthesis approach. Experimental results show that our design paradigm has achieved automatic generation of cost-competitive and reliable heterogeneous multiprocessor systems.

  • Optimizing Position of Repeaters in Distributed MIMO Repeater System for Large Capacity

    Pham Thanh HIEP  Ryuji KOHNO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E93-B No:12
      Page(s):
    3616-3623

    Multiple-input multiple-output (MIMO) repeater systems have been discussed in several published papers. When a repeater has only one antenna element, the propagation environment is called keyhole. In this kind of scenario the achievable channel capacity and link quality are decreased. Another limit is when the number of the antenna elements of a repeater is larger than that of a MIMO transceiver, the channel capacity cannot be increased. In this paper, in order to obtain an upper bound of the channel capacity, we express a propagation process of the distributed MIMO repeater system with amplify-and-forward method by the numerical formular, and optimize the position of each repeater.

  • Component Identification and Evaluation for Legacy Systems--An Empirical Study--

    JianFeng CUI  HeungSeok CHAE  

     
    PAPER-Software Engineering

      Vol:
    E93-D No:12
      Page(s):
    3306-3320

    In the field of software reengineering, many component identification approaches have been proposed for evolving legacy systems into component-based systems. Understanding the behaviors of various component identification approaches is the first important step to meaningfully employ them for legacy systems evolution, therefore we performed an empirical study on component identification technology with considerations of their similarity measures, clustering approaches and stopping criteria. We proposed a set of evaluation criteria and developed the tool CIETool to automate the process of component identification and evaluation. The experimental results revealed that many components of poor quality were produced by the employed component identification approaches; that is, many of the identified components were tightly coupled, weakly cohesive, or had inappropriate numbers of implementation classes and interface operations. Finally, we presented an analysis on the component identification approaches according to the proposed evaluation criteria, which suggested that the weaknesses of these clustering approaches were the major reasons that caused components of poor-quality.

  • Task Allocation with Algorithm Transformation for Reducing Data-Transfer Bottlenecks in Heterogeneous Multi-Core Processors: A Case Study of HOG Descriptor Computation

    Hasitha Muthumala WAIDYASOORIYA  Daisuke OKUMURA  Masanori HARIYAMA  Michitaka KAMEYAMA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E93-A No:12
      Page(s):
    2570-2580

    Heterogeneous multi-core processors are attracted by the media processing applications due to their capability of drawing strengths of different cores to improve the overall performance. However, the data transfer bottlenecks and limitations in the task allocation due to the accelerator-incompatible operations prevents us from gaining full potential of the heterogeneous multi-core processors. This paper presents a task allocation method based on algorithm transformation to increase the freedom of task allocation. We use approximation methods such as CORDIC algorithms to map the accelerator-incompatible operations to accelerator cores. According to the experimental results using HOG descriptor computation, the proposed task allocation method reduces the data transfer time by more than 82% and the total processing time by more than 79% compared to the conventional task allocation method.

  • A Cycle-Accurate Simulator for a Reconfigurable Multi-Media System

    Min ZHU  Leibo LIU  Shouyi YIN  Chongyong YIN  Shaojun WEI  

     
    PAPER

      Vol:
    E93-D No:12
      Page(s):
    3202-3210

    This paper introduces a cycle-accurate Simulator for a dynamically REconfigurable MUlti-media System, called SimREMUS. SimREMUS can either be used at transaction-level, which allows the modeling and simulation of higher-level hardware and embedded software, or at register transfer level, if the dynamic system behavior is desired to be observed at signal level. Trade-offs among a set of criteria that are frequently used to characterize the design of a reconfigurable computing system, such as granularity, programmability, configurability as well as architecture of processing elements and route modules etc., can be quickly evaluated. Moreover, a complete tool chain for SimREMUS, including compiler and debugger, is developed. SimREMUS could simulate 270 k cycles per second for million gates SoC (System-on-a-Chip) and produced one H.264 1080p frame in 15 minutes, which might cost days on VCS (platform: CPU: E5200@ 2.5 Ghz, RAM: 2.0 GB). Simulation showed that 1080p@30 fps of H.264 High Profile@ Level 4 can be achieved when exploiting a 200 MHz working frequency on the VLSI architecture of REMUS.

  • Coexistence of Dynamic Spectrum Access Based Heterogeneous Networks

    Chen SUN  Yohannes D. ALEMSEGED  HaNguyen TRAN  Hiroshi HARADA  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3293-3301

    This paper addresses the coexistence issue of distributed heterogeneous networks where the network nodes are cognitive radio terminals. These nodes, operating as secondary users (SUs), might interfere with primary users (PUs) who are licensed to use a given frequency band. Further, due to the lack of coordination and the dissimilarity of the radio access technologies (RATs) among these wireless nodes, they might interfere with each other. To solve this coexistence problem, we propose an architecture that enables coordination among the distributed nodes. The architecture provides coexistence solutions and sends reconfiguration commands to SU networks. As an example, time sharing is considered as a solution. Further, the time slot allocation ratios and transmit powers are parameters encapsulated in the reconfiguration commands. The performance of the proposed scheme is evaluated in terms of the coexistence between PUs and SUs, as well as the coexistence among SUs. The former addresses the interference from SUs to PUs, whereas the latter addresses the sharing of an identified spectrum opportunity among heterogeneous SU networks for achieving an efficient spectrum usage. In this study, we first introduce a new parameter named as quality of coexistence (QoC), which is defined as the ratio between the quality of SU transmissions and the negative interference to PUs. In this study we assume that the SUs have multiple antennas and employ fixed transmit power control (fixed-TPC). By using the approximation to the distribution of a weighted sum of chi-square random variables (RVs), we develop an analytical model for the time slot allocation among SU networks. Using this analytical model, we obtain the optimal time slot allocation ratios as well as transmit powers of the SU networks by maximizing the QoC. This leads to an efficient spectrum usage among SUs and a minimized negative influence to the PUs. Results show that in a particular scenario the QoC can be increased by 30%.

  • Scan-Based Side-Channel Attack against RSA Cryptosystems Using Scan Signatures

    Ryuta NARA  Kei SATOH  Masao YANAGISAWA  Tatsuo OHTSUKI  Nozomu TOGAWA  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E93-A No:12
      Page(s):
    2481-2489

    Scan-based side-channel attacks retrieve a secret key in a cryptography circuit by analyzing scanned data. Since they must be considerable threats to a cryptosystem LSI, we have to protect cryptography circuits from them. RSA is one of the most important cryptography algorithms because it effectively realizes a public-key cryptography system. RSA is extensively used but conventional scan-based side-channel attacks cannot be applied to it because it has a complicated algorithm. This paper proposes a scan-based side-channel attack which enables us to retrieve a secret key in an RSA circuit. The proposed method is based on detecting intermediate values calculated in an RSA circuit. We focus on a 1-bit time-sequence which is specific to some intermediate values. By monitoring the 1-bit time-sequence in the scan path, we can find out the register position specific to the intermediate value and we can know whether this intermediate value is calculated or not in the target RSA circuit. We can retrieve a secret key one-bit by one-bit from MSB to LSB. The experimental results demonstrate that a 1,024-bit secret key used in the target RSA circuit can be retrieved using 30.2 input messages within 98.3 seconds and its 2,048-bit secret key can be retrieved using 34.4 input within 634.0 seconds.

  • The Gaussian MIMO Broadcast Channel under Receive Power Protection Constraints Open Access

    Ian Dexter GARCIA  Kei SAKAGUCHI  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3448-3460

    A Gaussian MIMO broadcast channel (GMBC) models the MIMO transmission of Gaussian signals from a transmitter to one or more receivers. Its capacity region and different precoding schemes for it have been well investigated, especially for the case wherein there are only transmit power constraints. In this paper, a special case of GMBC is investigated, wherein receive power constraints are also included. By imposing receive power constraints, the model, called protected GMBC (PGMBC), can be applied to certain scenarios in spatial spectrum sharing, secretive communications, mesh networks and base station cooperation. The sum capacity, capacity region, and application examples for the PGMBC are discussed in this paper. Sub-optimum precoding algorithms are also proposed for the PGMBC, where standard user precoding techniques are performed over a BC with a modified channel, which we refer to as the "protection-implied BC." In the protection-implied BC, the receiver protection constraints have been implied in the channel, which means that by satisfying the transmit power constraints on the protection implied channel, receiver protection constraints are guaranteed to be met. Any standard single-user or multi-user MIMO precoding scheme may then be performed on the protection-implied channel. When SINR-matching duality-based precoding is applied on the protection-implied channel, sum-capacity under full protection constraints (zero receive power), and near-sum-capacity under partial protection constraints (limited non-zero receive power) are achieved, and were verified by simulations.

  • SLA-Based Scheduling of Bag-of-Tasks Applications on Power-Aware Cluster Systems

    Kyong Hoon KIM  Wan Yeon LEE  Jong KIM  Rajkumar BUYYA  

     
    PAPER

      Vol:
    E93-D No:12
      Page(s):
    3194-3201

    Power-aware scheduling problem has been a recent issue in cluster systems not only for operational cost due to electricity cost, but also for system reliability. In this paper, we provide SLA-based scheduling algorithms for bag-of-tasks applications with deadline constraints on power-aware cluster systems. The scheduling objective is to minimize power consumption as long as the system provides the service levels of users. A bag-of-tasks application should finish all the sub-tasks before the deadline as the service level. We provide the power-aware scheduling algorithms for both time-shared and space-shared resource sharing policies. The simulation results show that the proposed algorithms reduce much power consumption compared to static voltage schemes.

981-1000hit(3183hit)