The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] zero(316hit)

21-40hit(316hit)

  • An Equivalent Expression for the Wyner-Ziv Source Coding Problem Open Access

    Tetsunao MATSUTA  Tomohiko UYEMATSU  

     
    PAPER-Information Theory

      Pubricized:
    2021/09/09
      Vol:
    E105-A No:3
      Page(s):
    353-362

    We consider the coding problem for lossy source coding with side information at the decoder, which is known as the Wyner-Ziv source coding problem. The goal of the coding problem is to find the minimum rate such that the probability of exceeding a given distortion threshold is less than the desired level. We give an equivalent expression of the minimum rate by using the chromatic number and notions of covering of a set. This allows us to analyze the coding problem in terms of graph coloring and covering.

  • SimpleZSL: Extremely Simple and Fast Zero-Shot Learning with Nearest Neighbor Classifiers

    Masayuki HIROMOTO  Hisanao AKIMA  Teruo ISHIHARA  Takuji YAMAMOTO  

     
    PAPER-Pattern Recognition

      Pubricized:
    2021/10/29
      Vol:
    E105-D No:2
      Page(s):
    396-405

    Zero-shot learning (ZSL) aims to classify images of unseen classes by learning relationship between visual and semantic features. Existing works have been improving recognition accuracy from various approaches, but they employ computationally intensive algorithms that require iterative optimization. In this work, we revisit the primary approach of the pattern recognition, ı.e., nearest neighbor classifiers, to solve the ZSL task by an extremely simple and fast way, called SimpleZSL. Our algorithm consists of the following three simple techniques: (1) just averaging feature vectors to obtain visual prototypes of seen classes, (2) calculating a pseudo-inverse matrix via singular value decomposition to generate visual features of unseen classes, and (3) inferring unseen classes by a nearest neighbor classifier in which cosine similarity is used to measure distance between feature vectors. Through the experiments on common datasets, the proposed method achieves good recognition accuracy with drastically small computational costs. The execution time of the proposed method on a single CPU is more than 100 times faster than those of the GPU implementations of the existing methods with comparable accuracies.

  • Design of Diplexer Using Surface Acoustic Wave and Multilayer Ceramic Filters with Controllable Transmission Zero

    Shinpei OSHIMA  Hiroto MARUYAMA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/01/15
      Vol:
    E104-C No:8
      Page(s):
    370-378

    In this paper, we propose a design method for a diplexer using a surface acoustic wave (SAW) filter, a multilayer ceramic filter, chip inductors, and chip capacitors. A controllable transmission zero can be created in the stopband by designing matching circuits based on the out-of-band characteristics of the SAW filter using this method. The proposed method can achieve good attenuation performance and a compact size because it does not use an additional resonator for creating the controllable transmission zero and the matching circuits are composed of only five components. A diplexer is designed for 2.4 GHz wireless systems and a global positioning system receiver using the proposed method. It is compact (8.0 mm × 8.0 mm), and the measurement results indicate good attenuation performance with the controllable transmission zero.

  • Unified Likelihood Ratio Estimation for High- to Zero-Frequency N-Grams

    Masato KIKUCHI  Kento KAWAKAMI  Kazuho WATANABE  Mitsuo YOSHIDA  Kyoji UMEMURA  

     
    PAPER-Mathematical Systems Science

      Pubricized:
    2021/02/08
      Vol:
    E104-A No:8
      Page(s):
    1059-1074

    Likelihood ratios (LRs), which are commonly used for probabilistic data processing, are often estimated based on the frequency counts of individual elements obtained from samples. In natural language processing, an element can be a continuous sequence of N items, called an N-gram, in which each item is a word, letter, etc. In this paper, we attempt to estimate LRs based on N-gram frequency information. A naive estimation approach that uses only N-gram frequencies is sensitive to low-frequency (rare) N-grams and not applicable to zero-frequency (unobserved) N-grams; these are known as the low- and zero-frequency problems, respectively. To address these problems, we propose a method for decomposing N-grams into item units and then applying their frequencies along with the original N-gram frequencies. Our method can obtain the estimates of unobserved N-grams by using the unit frequencies. Although using only unit frequencies ignores dependencies between items, our method takes advantage of the fact that certain items often co-occur in practice and therefore maintains their dependencies by using the relevant N-gram frequencies. We also introduce a regularization to achieve robust estimation for rare N-grams. Our experimental results demonstrate that our method is effective at solving both problems and can effectively control dependencies.

  • Minimax Design of Sparse IIR Filters Using Sparse Linear Programming Open Access

    Masayoshi NAKAMOTO  Naoyuki AIKAWA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/02/15
      Vol:
    E104-A No:8
      Page(s):
    1006-1018

    Recent trends in designing filters involve development of sparse filters with coefficients that not only have real but also zero values. These sparse filters can achieve a high performance through optimizing the selection of the zero coefficients and computing the real (non-zero) coefficients. Designing an infinite impulse response (IIR) sparse filter is more challenging than designing a finite impulse response (FIR) sparse filter. Therefore, studies on the design of IIR sparse filters have been rare. In this study, we consider IIR filters whose coefficients involve zero value, called sparse IIR filter. First, we formulate the design problem as a linear programing problem without imposing any stability condition. Subsequently, we reformulate the design problem by altering the error function and prepare several possible denominator polynomials with stable poles. Finally, by incorporating these methods into successive thinning algorithms, we develop a new design algorithm for the filters. To demonstrate the effectiveness of the proposed method, its performance is compared with that of other existing methods.

  • Generation Method of Two-Dimensional Optical ZCZ Sequences with High Correlation Peak Value

    Takahiro MATSUMOTO  Hideyuki TORII  Yuta IDA  Shinya MATSUFUJI  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E104-A No:2
      Page(s):
    417-421

    In this paper, we propose new generation methods of two-dimensional (2D) optical zero-correlation zone (ZCZ) sequences with the high peak autocorrelation amplitude. The 2D optical ZCZ sequence consists of a pair of a binary sequence which takes 1 or 0 and a bi-phase sequence which takes 1 or -1, and has a zero-correlation zone in the two-dimensional correlation function. Because of these properties, the 2D optical ZCZ sequence is suitable for optical code-division multiple access (OCDMA) system using an LED array having a plurality of light-emitting elements arranged in a lattice pattern. The OCDMA system using the 2D optical ZCZ sequence can be increased the data rate and can be suppressed interference by the light of adjacent LEDs. By using the proposed generation methods, we can improve the peak autocorrelation amplitude of the sequence. This means that the BER performance of the OCDMA system using the sequence can be improved.

  • A 32GHz 68dBΩ Low-Noise and Balance Operation Transimpedance Amplifier in 130nm SiGe BiCMOS for Optical Receivers

    Chao WANG  Xianliang LUO  Mohamed ATEF  Pan TANG  

     
    PAPER

      Vol:
    E103-A No:12
      Page(s):
    1408-1416

    In this paper, a balance operation Transimpedance Amplifier (TIA) with low-noise has been implemented for optical receivers in 130 nm SiGe BiCMOS Technology, in which the optimal tradeoff emitter current density and the location of high-frequency noise corner were analyzed for acquiring low-noise performance. The Auto-Zero Feedback Loop (AZFL) without introducing unnecessary noises at input of the TIA, the tail current sink with high symmetries and the balance operation TIA with the shared output of Operational Amplifier (OpAmp) in AZFL were designed to keep balanced operation for the TIA. Moreover, cascode and shunt-feedback were also employed to expanding bandwidth and decreasing input referred noise. Besides, the formula for calculating high-frequency noise corner in Heterojunction Bipolar Transistor (HBT) TIA with shunt-feedback was derived. The electrical measurement was performed to validate the notions described in this work, appearing 9.6 pA/√Hz of input referred noise current Power Spectral Density (PSD), balance operation (VIN1=896mV, VIN2=896mV, VOUT1=1.978V, VOUT2=1.979V), bandwidth of 32GHz, overall transimpedance gain of 68.6dBΩ, a total 117mW power consumption and chip area of 484µm × 486µm.

  • Proposing High-Smart Approach for Content Authentication and Tampering Detection of Arabic Text Transmitted via Internet

    Fahd N. AL-WESABI  

     
    PAPER-Information Network

      Pubricized:
    2020/07/17
      Vol:
    E103-D No:10
      Page(s):
    2104-2112

    The security and reliability of Arabic text exchanged via the Internet have become a challenging area for the research community. Arabic text is very sensitive to modify by malicious attacks and easy to make changes on diacritics i.e. Fat-ha, Kasra and Damma, which are represent the syntax of Arabic language and can make the meaning is differing. In this paper, a Hybrid of Natural Language Processing and Zero-Watermarking Approach (HNLPZWA) has been proposed for the content authentication and tampering detection of Arabic text. The HNLPZWA approach embeds and detects the watermark logically without altering the original text document to embed a watermark key. Fifth level order of word mechanism based on hidden Markov model is integrated with digital zero-watermarking techniques to improve the tampering detection accuracy issues of the previous literature proposed by the researchers. Fifth-level order of Markov model is used as a natural language processing technique in order to analyze the Arabic text. Moreover, it extracts the features of interrelationship between contexts of the text and utilizes the extracted features as watermark information and validates it later with attacked Arabic text to detect any tampering occurred on it. HNLPZWA has been implemented using PHP with VS code IDE. Tampering detection accuracy of HNLPZWA is proved with experiments using four datasets of varying lengths under multiple random locations of insertion, reorder and deletion attacks of experimental datasets. The experimental results show that HNLPZWA is more sensitive for all kinds of tampering attacks with high level accuracy of tampering detection.

  • A Coin-Free Oracle-Based Augmented Black Box Framework (Full Paper)

    Kyosuke YAMASHITA  Mehdi TIBOUCHI  Masayuki ABE  

     
    PAPER-cryptography

      Vol:
    E103-A No:10
      Page(s):
    1167-1173

    After the work of Impagliazzo and Rudich (STOC, 1989), the black box framework has become one of the main research domain of cryptography. However black box techniques say nothing about non-black box techniques such as making use of zero-knowledge proofs. Brakerski et al. introduced a new black box framework named augmented black box framework, in which they gave a zero-knowledge proof oracle in addition to a base primitive oracle (TCC, 2011). They showed a construction of a non-interactive zero knowledge proof system based on a witness indistinguishable proof system oracle. They presented augmented black box construction of chosen ciphertext secure public key encryption scheme based on chosen plaintext secure public key encryption scheme and augmented black box separation between one-way function and key agreement. In this paper we simplify the work of Brakerski et al. by introducing a proof system oracle without witness indistinguishability, named coin-free proof system oracle, that aims to give the same construction and separation results of previous work. As a result, the augmented black box framework becomes easier to handle. Since our oracle is not witness indistinguishable, our result encompasses the result of previous work.

  • A Semantic Similarity Supervised Autoencoder for Zero-Shot Learning

    Fengli SHEN  Zhe-Ming LU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/03/03
      Vol:
    E103-D No:6
      Page(s):
    1419-1422

    This Letter proposes a autoencoder model supervised by semantic similarity for zero-shot learning. With the help of semantic similarity vectors of seen and unseen classes and the classification branch, our experimental results on two datasets are 7.3% and 4% better than the state-of-the-art on conventional zero-shot learning in terms of the averaged top-1 accuracy.

  • Simulated Annealing Method for Relaxed Optimal Rule Ordering

    Takashi HARADA  Ken TANAKA  Kenji MIKAWA  

     
    PAPER

      Pubricized:
    2019/12/20
      Vol:
    E103-D No:3
      Page(s):
    509-515

    Recent years have witnessed a rapid increase in cyber-attacks through unauthorized accesses and DDoS attacks. Since packet classification is a fundamental technique to prevent such illegal communications, it has gained considerable attention. Packet classification is achieved with a linear search on a classification rule list that represents the packet classification policy. As such, a large number of rules can result in serious communication latency. To decrease this latency, the problem is formalized as optimal rule ordering (ORO). In most cases, this problem aims to find the order of rules that minimizes latency while satisfying the dependency relation of the rules, where rules ri and rj are dependent if there is a packet that matches both ri and rj and their actions applied to packets are different. However, there is a case in which although the ordering violates the dependency relation, the ordering satisfies the packet classification policy. Since such an ordering can decrease the latency compared to an ordering under the constraint of the dependency relation, we have introduced a new model, called relaxed optimal rule ordering (RORO). In general, it is difficult to determine whether an ordering satisfies the classification policy, even when it violates the dependency relation, because this problem contains unsatisfiability. However, using a zero-suppressed binary decision diagram (ZDD), we can determine it in a reasonable amount of time. In this paper, we present a simulated annealing method for RORO which interchanges rules by determining whether rules ri and rj can be interchanged in terms of policy violation using the ZDD. The experimental results show that our method decreases latency more than other heuristics.

  • Hue Signature Auto Update System for Visual Similarity-Based Phishing Detection with Tolerance to Zero-Day Attack

    Shuichiro HARUTA  Hiromu ASAHINA  Fumitaka YAMAZAKI  Iwao SASASE  

     
    PAPER-Dependable Computing

      Pubricized:
    2019/09/04
      Vol:
    E102-D No:12
      Page(s):
    2461-2471

    Detecting phishing websites is imperative. Among several detection schemes, the promising ones are the visual similarity-based approaches. In those, targeted legitimate website's visual features referred to as signatures are stored in SDB (Signature Database) by the system administrator. They can only detect phishing websites whose signatures are highly similar to SDB's one. Thus, the system administrator has to register multiple signatures to detect various phishing websites and that cost is very high. This incurs the vulnerability of zero-day phishing attack. In order to address this issue, an auto signature update mechanism is needed. The naive way of auto updating SDB is expanding the scope of detection by adding detected phishing website's signature to SDB. However, the previous approaches are not suitable for auto updating since their similarity can be highly different among targeted legitimate website and subspecies of phishing website targeting that legitimate website. Furthermore, the previous signatures can be easily manipulated by attackers. In order to overcome the problems mentioned above, in this paper, we propose a hue signature auto update system for visual similarity-based phishing detection with tolerance to zero-day attack. The phishing websites targeting certain legitimate website tend to use the targeted website's theme color to deceive users. In other words, the users can easily distinguish phishing website if it has highly different hue information from targeted legitimate one (e.g. red colored Facebook is suspicious). Thus, the hue signature has a common feature among the targeted legitimate website and subspecies of phishing websites, and it is difficult for attackers to change it. Based on this notion, we argue that the hue signature fulfills the requirements about auto updating SDB and robustness for attackers' manipulating. This commonness can effectively expand the scope of detection when auto updating is applied to the hue signature. By the computer simulation with a real dataset, we demonstrate that our system achieves high detection performance compared with the previous scheme.

  • A Note on the Zero-Difference Balanced Functions with New Parameters

    Shanding XU  Xiwang CAO  Jian GAO  

     
    LETTER-Cryptography and Information Security

      Vol:
    E102-A No:10
      Page(s):
    1402-1405

    As a generalization of perfect nonlinear (PN) functions, zero-difference balanced (ZDB) functions play an important role in coding theory, cryptography and communications engineering. Inspired by a foregoing work of Liu et al. [1], we present a class of ZDB functions with new parameters based on the cyclotomy in finite fields. Employing these ZDB functions, we obtain simultaneously optimal constant composition codes and perfect difference systems of sets.

  • An Adaptive Bit Allocation for Maximum Bit-Rate Tomlinson-Harashima Precoding Open Access

    Shigenori KINJO  Shuichi OHNO  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:10
      Page(s):
    1438-1442

    An adaptive bit allocation scheme for zero-forcing (ZF) Tomlinson-Harashima precoding (THP) is proposed. The ZF-THP enables us to achieve feasible bit error rate (BER) performance when appropriate substream permutations are installed at the transmitter. In this study, the number of bits in each substream is adaptively allocated to minimize the average BER in fading environments. Numerical examples are provided to compare the proposed method with eigenbeam space division multiplexing (E-SDM) method.

  • Card-Based Physical Zero-Knowledge Proof for Kakuro

    Daiki MIYAHARA  Tatsuya SASAKI  Takaaki MIZUKI  Hideaki SONE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1072-1078

    Kakuro is a popular logic puzzle, in which a player fills in all empty squares with digits from 1 to 9 so that the sum of digits in each (horizontal or vertical) line is equal to a given number, called a clue, and digits in each line are all different. In 2016, Bultel, Dreier, Dumas, and Lafourcade proposed a physical zero-knowledge proof protocol for Kakuro using a deck of cards; their proposed protocol enables a prover to convince a verifier that the prover knows the solution of a Kakuro puzzle without revealing any information about the solution. One possible drawback of their protocol would be that the protocol is not perfectly extractable, implying that a prover who does not know the solution can convince a verifier with a small probability; therefore, one has to repeat the protocol to make such an error become negligible. In this paper, to overcome this, we design zero-knowledge proof protocols for Kakuro having perfect extractability property. Our improvement relies on the ideas behind the copy protocols in the field of card-based cryptography. By executing our protocols with a real deck of physical playing cards, humans can practically perform an efficient zero-knowledge proof of knowledge for Kakuro.

  • A Note on Two Constructions of Zero-Difference Balanced Functions

    Zongxiang YI  Yuyin YU  Chunming TANG  Yanbin ZHENG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E102-A No:4
      Page(s):
    680-684

    Notes on two constructions of zero-difference balanced (ZDB) functions are made in this letter. Then ZDB functions over Ze×∏ki=0 Fqi are obtained. And it shows that all the known ZDB functions using cyclotomic cosets over Zn are special cases of a generic construction. Moreover, applications of these ZDB functions are presented.

  • Modification of Velvet Noise for Speech Waveform Generation by Using Vocoder-Based Speech Synthesizer Open Access

    Masanori MORISE  

     
    LETTER-Speech and Hearing

      Pubricized:
    2018/12/05
      Vol:
    E102-D No:3
      Page(s):
    663-665

    This paper introduces a new noise generation algorithm for vocoder-based speech waveform generation. White noise is generally used for generating an aperiodic component. Since short-term white noise includes a zero-frequency component (ZFC) and inaudible components below 20 Hz, they are reduced in advance when synthesizing. We propose a new noise generation algorithm based on that for velvet noise to overcome the problem. The objective evaluation demonstrated that the proposed algorithm can reduce the unwanted components.

  • BER Analysis of WFRFT-Based Systems with Order Offset

    Yuan LIANG  Xinyu DA  Ruiyang XU  Lei NI  Dong ZHAI  Yu PAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/07/25
      Vol:
    E102-B No:2
      Page(s):
    277-284

    We propose a novel bit error rate (BER) analysis model of weighted-type fractional Fourier transform (WFRFT)-based systems with WFRFT order offset Δα. By using the traditional BPSK BER analysis method, we deduce the equivalent signal noise ratio (SNR), model the interference in the channel as a Gaussian noise with non-zero mean, and provide a theoretical BER expression of the proposed system. Simulation results show that its theoretical BER performance well matches the empirical performance, which demonstrates that the theoretical BER analysis proposed in this paper is reliable.

  • A Generic Construction of Mutually Orthogonal Optimal Binary ZCZ Sequence Sets

    Yubo LI  Shuonan LI  Hongqian XUAN  Xiuping PENG  

     
    LETTER-Sequence

      Vol:
    E101-A No:12
      Page(s):
    2217-2220

    In this letter, a generic method to construct mutually orthogonal binary zero correlation zone (ZCZ) sequence sets from mutually orthogonal complementary sequence sets (MOCSSs) with certain properties is presented at first. Then MOCSSs satisfying conditions are generated from binary orthogonal matrices with order N×N, where N=p-1, p is a prime. As a result, mutually orthogonal binary ZCZ sequence sets with parameters (2N2,N,N+1)-ZCZ can be obtained, the number of ZCZ sets is N. Note that each single ZCZ sequence set is optimal with respect to the theoretical bound.

  • Modified Mutually ZCZ Set of Optical Orthogonal Sequences

    Takahiro MATSUMOTO  Hideyuki TORII  Yuta IDA  Shinya MATSUFUJI  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E101-A No:12
      Page(s):
    2415-2418

    In this paper, we propose a generation method of new mutually zero-correlation zone set of optical orthogonal sequences (MZCZ-OOS) consisting of binary and bi-phase sequence pairs based on the optical zero-correlation zone (ZCZ) sequence set. The MZCZ-OOS is composed of several small orthogonal sequence sets. The sequences that belong to same subsets are orthogonal, and there is a ZCZ between the sequence that belong to different subsets. The set is suitable for the M-ary quasi-synchronous optical code-division multiple access (M-ary/QS-OCDMA) system. The product of set size S and family size M of proposed MMZCZ-OOS is more than the upper bound of optical ZCZ sequence set, and is fewer than the that of optical orthogonal sequence set.

21-40hit(316hit)