The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] zero(315hit)

141-160hit(315hit)

  • Construction of Binary Array Set with Zero Correlation Zone Based on Interleaving Technique

    Yifeng TU  Pingzhi FAN  Li HAO  Xiyang LI  

     
    PAPER-Information Theory

      Vol:
    E94-A No:2
      Page(s):
    766-772

    Sequences with good correlation properties are of substantial interest in many applications. By interleaving a perfect array with shift sequences, a new method of constructing binary array set with zero correlation zone (ZCZ) is presented. The interleaving operation can be performed not only row-by-row but also column-by-column on the perfect array. The resultant ZCZ binary array set is optimal or almost optimal with respect to the theoretical bound. The new method provides a flexible choice for the rectangular ZCZ and the set size.

  • A General Construction of ZCZ Sequence Set with Large Family Size and Long Period

    Xuan ZHANG  Qiaoyan WEN  Jie ZHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E94-A No:1
      Page(s):
    420-423

    In this paper, we introduce a new general construction of zero correlation zone (ZCZ) sequence set, which is based on two given ZCZ sequence sets. Compared with the two given sequence sets, the resultant sequence set not only has larger family size and longer period, but also provides more flexible choices of basic sequences, ZCZ length and family size.

  • An Efficient Authentication for Lightweight Devices by Perfecting Zero-Knowledgeness

    Bagus SANTOSO  Kazuo OHTA  Kazuo SAKIYAMA  Goichiro HANAOKA  

     
    PAPER-Identification

      Vol:
    E94-A No:1
      Page(s):
    92-103

    We present a new methodology for constructing an efficient identification scheme, and based on it, we propose a lightweight identification scheme whose computational and storage costs are sufficiently low even for cheap devices such as RFID tags. First, we point out that the efficiency of a scheme with statistical zero-knowledgeness can be significantly improved by enhancing its zero-knowledgeness to perfect zero-knowledge. Then, we apply this technique to the Girault-Poupard-Stern (GPS) scheme which has been standardized by ISO/IEC. The resulting scheme shows a perfect balance between communication cost, storage cost, and circuit size (computational cost), which are crucial factors for implementation on RFID tags. Compared to GPS, the communication and storage costs are reduced, while the computational cost is kept sufficiently low so that it is implementable on a circuit nearly as small as GPS. Under standard parameters, the prover's response is shortened 80 bits from 275 bits to 195 bits and in application using coupons, storage for one coupon is also reduced 80 bits, whereas the circuit size is estimated to be larger by only 335 gates. Hence, we believe that the new scheme is a perfect solution for fast authentication of RFID tags.

  • Quadriphase Z-Complementary Sequences

    Xudong LI  Pingzhi FAN  Xiaohu TANG  Li HAO  

     
    PAPER-Sequences

      Vol:
    E93-A No:11
      Page(s):
    2251-2257

    Aperiodic quadriphase Z-complementary sequences, which include the conventional complementary sequences as special cases, are introduced. It is shown that, the aperiodic quadriphase Z-complementary pairs are normally better than binary ones of the same length, in terms of the number of Z-complementary pairs, and the maximum zero correlation zone. New notions of elementary transformations on quadriphase sequences and elementary operations on sets of quadriphase Z-complementary sequences are presented. In particular, new methods for analyzing the relations among the formulas relative to sets of quadriphase Z-complementary sequences and for describing the sets are proposed. The existence problem of Z-complementary pairs of quadriphase sequences with zero correlation zone equal to 2, 3, and 4 is investigated. Constructions of sets of quadriphase Z-complementary sequences and their mates are given.

  • On Binary Sequence Pairs with Two-Level Periodic Autocorrelation Function

    Kai LIU  Chengqian XU  

     
    PAPER-Sequences

      Vol:
    E93-A No:11
      Page(s):
    2278-2285

    Binary sequence pairs as a class of mismatched filtering of binary sequences can be applied in radar, sonar, and spread spectrum communication system. Binary sequence pairs with two-level periodic autocorrelation function (BSPT) are considered as the extension of usual binary sequences with two-level periodic autocorrelation function. Each of BSPT consists of two binary sequences of which all out-phase periodic crosscorrelation functions, also called periodic autocorrelation functions of sequence pairs, are the same constant. BSPT have an equivalent relationship with difference set pairs (DSP), a new concept of combinatorial mathematics, which means that difference set pairs can be used to research BSPT as a kind of important tool. Based on the equivalent relationship between BSPT and DSP, several families of BSPT including perfect binary sequence pairs are constructed by recursively constructing DSP on the integer ring. The discrete Fourier transform spectrum property of BSPT reveals a necessary condition of BSPT. By interleaving perfect binary sequence pairs and Hadamard matrix, a new family of binary sequence pairs with zero correlation zone used in quasi-synchronous code multiple division address is constructed, which is close to the upper theoretical bound with sequence length increasing.

  • Error Performance of Prerake Diversity Combining-Based UWB Spatial Multiplexing MIMO Systems over Indoor Wireless Channels

    Jinyoung AN  Sangchoon KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2817-2821

    In this letter, we consider a novel ultra-wideband (UWB) spatial multiplexing (SM) multiple input multiple output (MIMO) structure, which consists of prerake diversity combiners in the transmitter and a zero forcing (ZF) detector in the receiver. For a UWB SM MIMO system with N transmit antennas, M receive antennas, and L resolvable multipath components, it is shown that the proposed prerake combining-based MIMO detection scheme has the diversity order of (LN-M+1) and its BER performance is analytically presented in a log-normal fading channel and also compared with that of a rake combining-based ZF scheme.

  • User Scheduling for Distributed-Antenna Zero-Forcing Beamforming Downlink Multiuser MIMO-OFDM Systems

    Masaaki FUJII  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:9
      Page(s):
    2370-2380

    We describe a user scheduling scheme suitable for zero-forcing beamforming (ZFBF) downlink multiuser multiple-input multiple-output (MU-MIMO) orthogonal frequency-division multiplexing (OFDM) transmissions in time-division-duplex distributed antenna systems. This user scheduling scheme consists of inter-cell-interference mitigation scheduling by using fractional frequency reuse, proportional fair scheduling in the OFDM frequency domain, and high-capacity ZFBF-MU-MIMO scheduling by using zero-forcing with selection (ZFS). Simulation results demonstrate in a severe user-distribution condition that includes cell-edge users that the proposed user scheduling scheme achieves high average cell throughputs close to that provided by only ZFS and that it also achieves almost the same degree of user fairness as round-robin user scheduling.

  • Adaptive Zero-Coefficient Distribution Scan for Inter Block Mode Coding of H.264/AVC

    Jing-Xin WANG  Alvin W.Y. SU  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E93-D No:8
      Page(s):
    2273-2280

    Scanning quantized transform coefficients is an important tool for video coding. For example, the MPEG-4 video coder adopts three different scans to get better coding efficiency. This paper proposes an adaptive zero-coefficient distribution scan in inter block coding. The proposed method attempts to improve H.264/AVC zero coefficient coding by modifying the scan operation. Since the zero-coefficient distribution is changed by the proposed scan method, new VLC tables for syntax elements used in context-adaptive variable length coding (CAVLC) are also provided. The savings in bit-rate range from 2.2% to 5.1% in the high bit-rate cases, depending on different test sequences.

  • A Class of Complementary Sequences with Multi-Width Zero Cross-Correlation Zone

    Zhenyu ZHANG  Fanxin ZENG  Guixin XUAN  

     
    PAPER-Coding Theory

      Vol:
    E93-A No:8
      Page(s):
    1508-1517

    A novel construction of complementary sequences with multi-width zero cross-correlation zone (ZCCZ) is presented based on the interleaving iteration of a basic kernel set. The presented multi-width ZCCZ complementary (MWZC) sequences can be divided into multiple sequence groups, the correlation functions of which possess one-width intragroup ZCCZ and multi-width intergroup ZCCZ. When an arbitrary orthogonal sequence set with set size equal to sequence length is used as a basic kernel set, the constructed MWZC sequence set and the combination sets of specific subsets with each subset including several groups can be optimal with respect to the theoretical bound on set size. In addition, the MWZC sequence set includes complementary sequence sets with one-width or two-width ZCCZ as special subsets, and allows a more flexible choice of sequence parameters.

  • Feedback Bandwidth Allocation for Users under Different Types of Channels in Multi-Antenna Systems

    Lv DING  Wei XU  Bin JIANG  Xiqi GAO  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E93-B No:7
      Page(s):
    1980-1983

    This paper considers an optimized limited feedback design for a multi-antenna system serving multiple users under different types of channels: Rayleigh distributed and line-of-sight distributed channels. Since the users are asymmetric, we propose an optimized feedback bandwidth allocation scheme for users under a total feedback rate constraint. The allocation scheme is designed according to the long-term channel type information of users, and thus it can be efficiently implemented. Numerical results verify the effectiveness of our proposed scheme.

  • Moving Picture Coding by Lapped Transform and Edge Adaptive Deblocking Filter with Zero Pruning SPIHT

    Nasharuddin ZAINAL  Toshihisa TANAKA  Yukihiko YAMASHITA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E93-D No:6
      Page(s):
    1608-1617

    We propose a moving picture coding by lapped transform and an edge adaptive deblocking filter to reduce the blocking distortion. We apply subband coding (SBC) with lapped transform (LT) and zero pruning set partitioning in hierarchical trees (zpSPIHT) to encode the difference picture. Effective coding using zpSPIHT was achieved by quantizing and pruning the quantized zeros. The blocking distortion caused by block motion compensated prediction is reduced by an edge adaptive deblocking filter. Since the original edges can be detected precisely at the reference picture, an edge adaptive deblocking filter on the predicted picture is very effective. Experimental results show that blocking distortion has been visually reduced at very low bit rate coding and better PSNRs of about 1.0 dB was achieved.

  • Fast Interior Point Method for MIMO Transmit Power Optimization with Per-Antenna Power Constraints

    Yusuke OHWATARI  Anass BENJEBBOUR  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1484-1493

    For multiple-input multiple-output (MIMO) precoded transmission that has individual constraints on the maximum power of each transmit antenna or a subset of transmit antennas, the transmit power optimization problem is a non-linear convex optimization problem with a high level of computational complexity. In this paper, assuming the use of the interior point method (IPM) to solve this problem, we propose two efficient techniques that reduce the computational complexity of the IPM by appropriately setting its parameters. Based on computer simulation, the achieved reductions in the level of the computational complexity are evaluated using the proposed techniques for both the fairness and the sum-rate maximization criteria assuming i.i.d Rayleigh fading MIMO channels and block diagonalization zero-forcing as a multi-user MIMO (MU-MIMO) precoder.

  • A Neural Recording Amplifier with Low-Frequency Noise Suppression

    Takeshi YOSHIDA  Yoshihiro MASUI  Ryoji EKI  Atsushi IWATA  Masayuki YOSHIDA  Kazumasa UEMATSU  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    849-854

    To detect neural spike signals, low-power neural signal recording frontend circuits must amplify neural signals with below 100 µV amplitude and a few hundred Hz frequency while suppressing a large DC offset voltage, 1/f noise of MOSFETs, and induced noise of AC power supply. To overcome the problem of unwanted noise at such a low signal level, a low-noise neural signal detection amplifier with low-frequency noise suppression scheme was developed utilizing a new autozeroing technique. A test chip was designed and fabricated with a mixed signal 0.18-µm CMOS technology. The voltage gain of 39 dB at the bandwidth of the neural signal and the gain reduction of 20 dB at AC supply noise of 60 Hz were obtained. The input equivalent noise and power dissipation were 90 nV/root-Hz and 90 µW at a supply voltage of 1.5 V, respectively.

  • New General Constructions of LCZ Sequence Sets Based on Interleaving Technique and Affine Transformations

    Xuan ZHANG  Qiaoyan WEN  Jie ZHANG  

     
    PAPER-Communication Theory and Signals

      Vol:
    E93-A No:5
      Page(s):
    942-949

    In this paper, we propose four new general constructions of LCZ/ZCZ sequence sets based on interleaving technique and affine transformations. A larger family of LCZ/ZCZ sequence sets with longer period are generated by these constructions, which are more flexible among the selection of the alphabet size, the period of the sequences and the length of LCZ/ZCZ, compared with those generated by the known constructions. Especially, two families of the newly constructed sequences can achieve or almost achieve the theoretic bound.

  • "The Center of Scattering"--Where is the Center of a Polygonal Cylinder for Electromagnetic Scattering ?--

    Masahiro HASHIMOTO  

     
    BRIEF PAPER

      Vol:
    E93-C No:1
      Page(s):
    74-76

    Phase information on wave scattering is not unique and greatly depends on a choice of the origin of coordinates in the measurement system. The present paper argues that the center of scattering for polygonal cylinders should not be a geometrical center of the obstacle such as a center of gravity but be a position that acts as a balance to the electrostatic field effects from edge points. The position is exactly determined in terms of edge positions, edge parameters and lengths of side of polygons. A few examples are given to illustrate a difference from the center of geometry.

  • A Random Access Scheme Robust to Timing Offsets for Uplink OFDMA Systems

    Minjoong RIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:10
      Page(s):
    3274-3276

    If ranging processes are not frequent in an uplink OFDMA system, timing synchronization between the base and mobile stations may not be maintained and the performance may be degraded. This paper proposes a random access scheme in which a short OFDMA symbol is transmitted to maintain the orthogonality with timing offsets. A short symbol is constructed by inserting zero-padding to an OFDMA symbol.

  • Proximity Coupled Interconnect Using Broadside Coupled Composite Right/Left-Handed Transmission Line

    Naobumi MICHISHITA  Akiyoshi ABE  Yoshihide YAMADA  Anthony LAI  Tatsuo ITOH  

     
    PAPER

      Vol:
    E92-C No:9
      Page(s):
    1150-1156

    In this paper, the feasibility of composite right/left-handed transmission lines for realizing proximity coupled interconnects is reported. The proposed interconnects' resonant length can be miniaturized due to the zeroth order resonance supported by a composite right/left-handed transmission line resonator. In addition, the proposed interconnects can achieve broadside coupling because the zeroth order resonance occurs in the fast-wave region. Simulated and measured electric field distributions are shown to explain the broadside coupling phenomenon. To validate the arbitrary size and broadside coupling of the proposed interconnects, simulated and measured transmission characteristics are presented. The results show that low insertion loss can be achieved by using single and double broadside coupling between interconnects.

  • Spatial-Temporal Combining-Based ZF Detection in Ultra-Wideband Communications

    Jinyoung AN  Sangchoon KIM  

     
    LETTER-Communication Theory and Signals

      Vol:
    E92-A No:7
      Page(s):
    1727-1730

    The performance of ultra-wideband (UWB) multiple input multiple output (MIMO) receiver based on the RAKE maximal ratio combiner (MRC) followed by a zero forcing (ZF) detector is analytically examined. For a UWB MIMO system with NT transmit antennas, NR receive antennas, and L resolvable multipath components, the proposed MIMO detection scheme is shown to have the diversity order of LNR-NT+1 and its analytical error rate expression is presented in a log-normal fading channel. We also compare the analytical BERs with the simulated results.

  • Antenna-Permutation Channel-Vector Quantization for Finite Rate Feedback in Zero-Forcing Beamforming Multiuser MIMO-OFDM Systems

    Masaaki FUJII  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2442-2451

    An antenna-permutation (AP) scheme is described for channel-vector quantization (CVQ) in zero-forcing beamforming (ZFBF) multiuser multiple-input and multiple-output orthogonal frequency-division multiplexing systems with multiple receive antennas. Different sets of multiple channel sub-matrices are selected for different subcarriers and then quantized to multiple quantization vectors for finite rate feedback. Based on the quantization vectors, ZFBF provides a single stream or multiple streams to users while increasing frequency selectivity. Simulation results demonstrate that AP-CVQ with four-bit quantization that incorporates with pre-whitening maximum likelihood detection for two stream reception achieved better average packet error rates than minimum mean square error receive beamforming for single stream reception when the frequency selectivity was not severe.

  • Joint Design of Precoders and Decoders for Multi-User MIMO Downlink without Iteration

    Lanqi NIU  Taiyi ZHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:4
      Page(s):
    1384-1387

    In this letter, a new joint precoding and decoding design scheme for multiuser MIMO downlink is proposed which dispenses with iterative operations and can achieve better performance. This scheme introduces zero-force processing into minimum mean square error (MMSE) design scheme to avoid iterative operations. We derived closed-form precoders and decoders and transmit power allocation strategy of proposed design scheme, validated performance of proposed design scheme by computer simulation. The simulation results show that the proposed design scheme can achieve better bit error rate (BER) and sum capacity performance compared to an existing non-iterative design scheme.

141-160hit(315hit)