This paper illustrates various content sharing systems that take advantage of cloud's storage and computational resources as well as their supporting conventional technologies. First, basic technology concepts supporting cloud-based systems from a client-server to cloud computing as well as their relationships and functional linkages are shown. Second, the taxonomy of cloud-based system models from the aspect of multiple clouds' interoperability is explained. Interoperability can be categorized into provider-centric and client-centric scenarios. Each can be further divided into federated clouds, hybrid clouds, multi-clouds and aggregated service by broker. Third, practical cloud-based systems related to contents sharing are reported and their characteristics are discussed. Finally, future direction of cloud-based content sharing is suggested.
Olayinka O. OGUNDILE Daniel J. VERSFELD
Iterative channel estimation and decoding receivers have evolved over the years, most especially with Turbo and LPDC codes. Nevertheless, few works have determined the performance of symbol level Reed-Solomon (RS) codes in iterative receiver structures. The iterative channel estimation and symbol level RS decoding receiver structure found in literature concentrate on M-QAM systems over flat Rayleigh fading channels. In this paper, attention is focused on the performance of RS codes in iterative channel estimation and decoding receiver structures for Orthogonal Frequency Division Multiplexing (OFDM) systems on frequency-selective Rayleigh fading channels. Firstly, the paper extends the Koetter and Vardy (KV) RS iterative receiver structure over flat Rayleigh fading channels to frequency-selective Rayleigh fading channels. In addition, the paper develops a symbol level RS iterative receiver structure for OFDM systems on frequency-selective Rayleigh fading channels based on the Parity-check matrix Transformation Algorithm (PTA). The performance of the RS-KV and RS-PTA iterative receiver structures for OFDM systems are documented through computer simulation. The simulation results verify that both iterative receiver structures are suitable for real time RS OFDM wireless applications. The results also show that the developed RS-PTA iterative receiver structure is a low complexity and high performance alternative to the RS-KV iterative receiver structure.
Xuemeng ZHAI Mingda WANG Hangyu HU Guangmin HU
Identifying IDC (Internet Data Center) IP addresses and analyzing the connection relationship of IDC could reflect the IDC network resource allocation and network layout which is helpful for IDC resource allocation optimization. Recent research mainly focuses on minimizing electricity consumption and optimizing network resource allocation based on IDC traffic behavior analysis. However, the lack of network-wide IP information from network operators has led to problems like management difficulties and unbalanced resource allocation of IDC, which are still unsolved today. In this paper, we propose a method for the IP identification and connection relationship analysis of IDC based on the flow connection behavior analysis. In our method, the frequent IP are extracted and aggregated in backbone communication network based on the traffic characteristics of IDC. After that, the connection graph of frequent IP (CGFIP) are built by analyzing the behavior of the users who visit the IDC servers, and IDC IP blocks are thus identified using CGFIP. Furthermore, the connection behavior characteristics of IDC are analyzed based on the connection graphs of IDC (CGIDC). Our findings show that the method can accurately identify the IDC IP addresses and is also capable of reflecting the relationships among IDCs effectively.
Hidenori MARUTA Tsutomu SAKAI Suguru SAGARA Yuichiro SHIBATA Keiichi HIROSE Fujio KUROKAWA
The purpose of this paper is to propose a flexible load-dependent digital soft-start control method for dc-dc converters in a 380Vdc system. The soft-start operation is needed to prevent negative effects such as large inrush current and output overshoot to a power supply in the start-up process of dc-dc converters. In the conventional soft-start operation, a dc-dc converter has a very slow start-up to deal with the light load condition. Therefore, it always takes a long time in any load condition to start up a power supply and obtain the desired output. In the proposed soft-start control method, the speed of the start-up process is flexibly controlled depending on the load condition. To obtain the optimal speed for any load condition, the speed of the soft-start is determined from a approximated function of load current, which is estimated from experiment results in advance. The proposed soft-start control method is evaluated both in simulations and experiments. From results, it is confirmed that the proposed method has superior soft-start characteristics compared to the conventional one.
Moo-Woong JEONG Tae-Won BAN Bang Chul JUNG
In this paper, we investigate a user and antenna joint selection problem in multi-user large-scale MIMO downlink networks, where a BS with N transmit antennas serves K users, and N is much larger than K. The BS activates only S(S≤N) antennas for data transmission to reduce hardware cost and computation complexity, and selects the set of users to which data is to be transmitted by maximizing the sum-rate. The optimal user and antenna joint selection scheme based on exhaustive search causes considerable computation complexity. Thus, we propose a new joint selection algorithm with low complexity and analyze the performance of the proposed scheme in terms of sum-rate and complexity. When S=7, N=10, K=5, and SNR=10dB, the sum-rate of the proposed scheme is 5.1% lower than that of the optimal scheme, while the computation complexity of the proposed scheme is reduced by 99.0% compared to that of the optimal scheme.
Masahiro NAKAGAWA Hiroshi HASEGAWA Ken-ichi SATO
Adaptive and flexible network control technology is considered essential for efficient network resource utilization. Moreover, such technology is becoming a key to cost-effectively meet diverse service requirements and accommodate heavier traffic with limited network resources; demands that conventional static operation cannot satisfy. To address this issue, we previously studied dynamic network control technology for large-capacity network services including on-demand broad bandwidth provisioning services and layer-one VPN. Our previous study introduced a simple weighting function for achieving fairness in terms of path length and proposed two dynamic Make Before Break Routing algorithms for reducing blocking probability. These algorithms enhance network utilization by rerouting existing paths to alternative routes while completely avoiding disruption for highly reliable services. However, the impact of this avoidance of service disruption on blocking probability has not been clarified. In this paper, we propose modified versions of the algorithms that enhance network utilization while slightly increasing disruption by rerouting, which enable us to elucidate the effectiveness of hitless rerouting. We also provide extensive evaluations including a comparison of original and modified algorithms. Numerical examples demonstrate that they achieve not only a high degree of fairness but also low service blocking probability. Hitless rerouting is achieved with a small increase in blocking probability.
Sungjin SHIN Donghyuk HAN Hyoungjun CHO Jong-Moon CHUNG
Due to the rapid growth of applications that are based on Internet of Things (IoT) and real-time communications, mobile traffic growth is increasing exponentially. In highly populated areas, sudden concentration of numerous mobile user traffic can cause radio resource shortage, where traffic offloading is essential in preventing overload problems. Vertical handover (VHO) technology which supports seamless connectivity across heterogeneous wireless networks is a core technology of traffic offloading. In VHO, minimizing service interruption is a key design factor, since service interruption deteriorates service performance and degrades user experience (UX). Although 3GPP standard VHO procedures are designed to prevent service interruption, severe quality of service (QoS) degradation and severe interruption can occur in real network environments due to unintended disconnections with one's base station (BS) or access point (AP). In this article, the average minimum handover interruption time (HIT) (i.e., the guaranteed HIT influence) between LTE and Wi-Fi VHO is analyzed and measured based on 3GPP VHO access and decision procedures. In addition, the key parameters and procedures which affect HIT performance are analyzed, and a reference probability density function (PDF) for HIT prediction is derived from Kolmogorov-Smirnov test techniques.
Jichiang TSAI Jain-Shing LIU Tien-Yu CHANG
Peer-to-peer (P2P) overlay networks are widely employed in distributed systems. The number of hops required by a node to locate an object is the fundamental search cost of a P2P network. Creating replicas can efficiently reduce the cost of object search, so how to deploy replicas to reduce the cost as much as possible is a critical problem of P2P networks. In the literature, most existing replica placement strategies arrange replicas at nodes near the one containing the considered object. In this paper, we formally demonstrate that for a complete Chord P2P network and many non-complete Chord ones, due to their deterministic structures, we can allocate replicas to nodes closest to the target in the identifier space to maximize the reduction in the total number of hops required by all nodes to reach a copy of the object during the search heading to the target node.
Nobutaka OMAKI Tetsuro IMAI Koshiro KITAO Yukihiko OKUMURA
Recently, mobile networks employing high-speed high-capacity communications have been investigated extensively to satisfy the demand for faster and higher-capacity data communications. In one approach, frequencies between 6 and 100GHz are candidates to utilize relatively wide frequency bandwidths. Accordingly, radio propagation loss in these frequency bands must be characterized. Ray-tracing (RT) is the most common modeling approach to predict propagation loss in site-specific scenarios. The accuracy of RT simulations has been investigated in urban street cell environments based on comparison to measurement results and we observed that the difference between RT simulation and measurement results tends to increase as the frequency increases. In this paper, we focus on the shape of building corners at an intersection because it is this shape that is a dominant contributing factor in the region away from the intersection. In order to correct the error in the conventional RT method, we propose an alternative model that considers the detailed shape of the building corner and surface roughness. The performance of the RT simulation using the proposed method is then investigated based on comparison of two different sets of measurement results. Finally, we extract the optimal size and roughness for the proposed modeling method. Consequently, we confirm that using the proposed method with optimized parameters significantly enhances the accuracy compared to the conventional method.
Xin XU Jiro HIROKAWA Makoto ANDO
This paper presents the design and characterization of an E-band 16×16-slot monopulse array antenna with full-corporate-feed fabricated by the commercially available batch process of diffusion bonding of laminated copper plates. The antenna is multi-layered, and consists of vertically-interconnected radiating elements, a corporate-feed circuit and a comparator. It has four input ports for different excitations. Sum and difference beams in different cut-planes for monopulse operation can be generated. The antenna has a quasi-planar profile, and a total size of 13.31 λ0×13.31λ0×1.52λ0 (λ0 is the wavelength at the design frequency of 78.5GHz). The antenna demonstrates a wide operation bandwidth of 17.2 (70-87.2) GHz for VSWR < 2. At 78.5GHz: 1) for the sum beam, there is a 32.6-dBi realized gain (83% antenna efficiency) and a 33.3-dBi directivity (95% aperture efficiency); 2) for the difference beams in the E-, H-, 45°-, and 135°-planes, the null depths are -53.0, -58.0, -57.8, and -65.6dB, respectively. Across the full operation band where the sum main-beam and difference null are able to consistently point at the boresight, the antenna also demonstrates excellent performance in terms of high gain, high efficiency, high isolation, low cross-polarization, and distinguished monopulse capability.
Wenbo XU Yifan WANG Yibing GAI Siye WANG Jiaru LIN
The theory of compressed sensing (CS) is very attractive in that it makes it possible to reconstruct sparse signals with sub-Nyquist sampling rates. Considering that CS can be regarded as a joint source-channel code, it has been recently applied in communication systems and shown great potential. This paper studies compressed cooperation in an amplify-and-forward (CC-AF) relay channel. By discussing whether the source transmits the same messages in two phases, and the different cases of the measurement matrices used at the source and the relay, four decoding strategies are proposed and their transmission rates are analyzed theoretically. With the derived rates, we show by numerical simulations that CC-AF outperforms the direct compressed transmission without relay. In addition, the performance of CC-AF and the existing compressed cooperation with decode-and-forward relay is also compared.
Takuto ARAI Atsushi OHTA Yushi SHIRATO Satoshi KUROSAKI Kazuki MARUTA Tatsuhiko IWAKUNI Masataka IIZUKA
This paper proposes a new antenna array design of Massive MIMO for capacity enhancement in line of sight (LOS) environments. Massive MIMO has two key problems: the heavy overhead of feeding back the channel state information (CSI) for very large number of transmission and reception antenna element pairs and the huge computation complexity imposed by the very large scale matrixes. We have already proposed a practical application of Massive MIMO, that is, Massive Antenna Systems for Wireless Entrance links (MAS-WE), which can clearly solve the two key problems of Massive MIMO. However, the conventional antenna array arrangements; e.g. uniform planar array (UPA) or uniform circular array (UCA) degrade the system capacity of MAS-WE due to the channel spatial correlation created by the inter-element spacing. When the LOS component dominates the propagation channel, the antenna array can be designed to minimize the inter-user channel correlation. We propose an antenna array arrangement to control the grating-lobe positions and achieve very low channel spatial correlation. Simulation results show that the proposed arrangement can reduce the spatial correlation at CDF=50% value by 80% compared to UCA and 75% compared to UPA.
Naoto SASAOKA James OKELLO Masatsune ISHIHARA Kazuki AOYAMA Yoshio ITOH
We propose a pre-filtering system for blind equalization in order to separate orthogonal frequency division multiplexing (OFDM) symbols in a multiple-input multiple-output (MIMO) - OFDM system. In a conventional blind MIMO-OFDM equalization without the pre-filtering system, there is a possibility that originally transmitted streams are permutated, resulting in the receiver being unable to retrieve desired signals. We also note that signal permutation is different for each subcarrier. In order to solve this problem, each transmitted stream of the proposed MIMO-OFDM system is pre-filtered by a unique allpass filter. In this paper, the pre-filter is referred to as transmit tagging filter (TT-Filter). At a receiver, an inverse filter of the TT-filter is used to blindly equalize a MIMO channel without permutation problem. Further, in order to overcome the issue of phase ambiguity, this paper introduces blind phase compensation.
In this paper, we investigate the channel characteristics of underwater optical wireless communications (UOWC) based on Monte Carlo simulation method. The impulse response and channel time dispersion of the link are discussed. Also we consider the channel parameters comprehensively like the water type, attenuation length, divergence angle, beam width, field-of-view (FOV), receiver aperture and position. Simulation results suggest that in clear water, the channel can effectively be considered as non inter-symbol interference (ISI) when working over distance of up to 40m. Therefore, in practice the receiver does not need to perform computationally complex signal processing operations. However, in harbor water, the channel time dispersion will enlarge with larger FOV or divergence angle, and reduce the data transmission efficiency. When the attenuation length is smaller than diffused length, larger receivers offer lower intensity than smaller ones. In contrast, the intensity enhances with larger receiver at the small FOV, however, they trend to similar regardless of the apertures at large FOV. Furthermore, we study the effect of misalignment of the transmitter and receiver on the received intensity. The results give us some insight in terms of what constitutes an accurate UOWC channel.
Ayaz HUSSAIN Sang-Hyo KIM Seok-Ho CHANG
A dual-hop amplify-and-forward (AF) relaying system with beamforming is analyzed over η-µ fading channels that includes Nakagami-m, Nakagami-q (Hoyt), and Rayleigh fading channels as special cases. New and exact expressions for the outage probability (OP) and average capacity are derived. Moreover, a new asymptotic analysis is also conducted for the OP and average capacity in terms of basic elementary functions which make it easy to understand the system behavior and the impact of channel parameters. The viability of the analysis is verified by Monte Carlo simulations.
Wei HAN Baosheng WANG Zhenqian FENG Baokang ZHAO Wanrong YU Zhu TANG
Border Gateway Protocol (BGP), with its advantages in routing isolation support and mature application, is a promising candidate to integrate satellite systems into the terrestrial IP network. However, with more and more ground stations accessing satellites by BGP, a significant amount of routing overhead can be produced on limited satellite links, especially for geostationary satellite networks with thousands of accessing terminals in extremely large areas. To solve this challenge, multicast transport of BGP was proposed, which takes advantage of the inherent broadcast property of wireless channels. However, its performance can be seriously degraded when interfered with the environment. In this paper, NCSR (Network Coding for Satellite network BGP Routing transport) [1] is explored in depth. Unlike existing counterparts, NCSR pays more attention to the lossy space links and can achieve reliability with more bandwidth savings. A greedy based coding algorithm is proposed to realize the network coding operation. To demonstrate the efficiency of NCSR, we conduct theoretical analyses and extensive simulations in typical scenarios of satellite systems. Simulation results show that NCSR can greatly reduce the bandwidth usage while achieving comparable latency. Discussions on practical considerations when applying network coding method for reliability assurance are also presented in detail.
When performing measurements in an outdoor field environment, various interference factors occur. So, many studies have been performed to increase the accuracy of the localization. This paper presents a novel probability-based approach to estimating position based on Apollonius circles. The proposed algorithm is a modified method of existing trilateration techniques. This method does not need to know the exact transmission power of the source and does not require a calibration procedure. The proposed algorithm is verified in several typical environments, and simulation results show that the proposed method outperforms existing algorithms.
Takuya FUJIHASHI Yusuke HIROTA Takashi WATANABE
Multi-view video streaming plays an important role in new interactive and augmented video applications such as telepresence, remote surgery, and entertainment. For those applications, interactive multi-view video transmission schemes have been proposed that aim to reduce the amount of video traffic. Specifically, these schemes only encode and transmit video frames, which are potentially displayed by users, based on periodical feedback from the users. However, existing schemes are vulnerable to frame loss, which often occurs during transmissions, because they encode most video frames using inter prediction and inter-view prediction to reduce traffic. Frame losses induce significant quality degradation due to the collapse of the decoding operations. To improve the loss resilience, we propose an encoding/decoding system, Frame Popularity-based Multi-view Video Streaming (FP-MVS), for interactive multi-view video streaming services. The main idea of FP-MVS is to assign intra (I) frames in the prediction structure for less/more popular (i.e., few/many observed users) potential frames in order to mitigate the impact of a frame loss. In addition, FP-MVS utilizes overlapping and non-overlapping areas between all user's potential frames to prevent redundant video transmission. Although each intra-frame has a large data size, the video traffic can be reduced within a network constraint by combining multicast and unicast for overlapping and non-overlapping area transmissions. Evaluations using Joint Multi-view Video Coding (JMVC) demonstrated that FP-MVS achieves higher video quality even in loss-prone environments. For example, our scheme improves video quality by 11.81dB compared to the standard multi-view video encoding schemes at the loss rate of 5%.
Hui-Seon GANG Shaikhul Islam CHOWDHURY Chun-Su PARK Goo-Rak KWON Jae-Young PYUN
Video quality generally suffers from packet losses caused by an unreliable channel when video is transmitted over an error-prone wireless channel. This quality degradation is the main reason that a video compression encoder uses error-resilient coding to deal with the high packet-loss probability. The use of adequate error resilience can mitigate the effects of channel errors, but the coding efficiency for bit reduction will be decreased. On the other hand, H.264/AVC uses multiple reference frame (MRF) motion compensation for a higher coding efficiency. However, an increase in the number of reference frames in the H.264/AVC encoder has been recently observed, making the received video quality worse in the presence of transmission errors if the cyclic intra-refresh is used as the error-resilience method. This is because the reference-block selection in the MRF chooses blocks on the basis of the rate distortion optimization, irrespective of the intra-refresh coding. In this paper, a new error-resilient reference selection method is proposed to provide error resilience for MRF based motion compensation. The proposed error-resilient reference selection method achieves an average PSNR enhancement up to 0.5 to 2dB in 10% packet-loss-ratio environments. Therefore, the proposed method can be valuable in most MRF-based interactive video encoding system, which can be used for video broadcasting and mobile video conferencing over an erroneous network.