The search functionality is under construction.

IEICE TRANSACTIONS on Communications

  • Impact Factor

    0.72

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.6

Advance publication (published online immediately after acceptance)

Volume E104-B No.11  (Publication Date:2021/11/01)

    Regular Section
  • Research on DoS Attacks Intrusion Detection Model Based on Multi-Dimensional Space Feature Vector Expansion K-Means Algorithm

    Lijun GAO  Zhenyi BIAN  Maode MA  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/04/22
      Page(s):
    1377-1385

    DoS (Denial of Service) attacks are becoming one of the most serious security threats to global networks. We analyze the existing DoS detection methods and defense mechanisms in depth. In recent years, K-Means and improved variants have been widely examined for security intrusion detection, but the detection accuracy to data is not satisfactory. In this paper we propose a multi-dimensional space feature vector expansion K-Means model to detect threats in the network environment. The model uses a genetic algorithm to optimize the weight of K-Means multi-dimensional space feature vector, which greatly improves the detection rate against 6 typical Dos attacks. Furthermore, in order to verify the correctness of the model, this paper conducts a simulation on the NSL-KDD data set. The results show that the algorithm of multi-dimensional space feature vectors expansion K-Means improves the recognition accuracy to 96.88%. Furthermore, 41 kinds of feature vectors in NSL-KDD are analyzed in detail according to a large number of experimental training. The feature vector of the probability positive return of security attack detection is accurately extracted, and a comparison chart is formed to support subsequent research. A theoretical analysis and experimental results show that the multi-dimensional space feature vector expansion K-Means algorithm has a good application in the detection of DDos attacks.

  • Analysis of Signal Distribution in ASE-Limited Optical On-Off Keying Direct-Detection Systems

    Hiroki KAWAHARA  Kyo INOUE  Koji IGARASHI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2021/05/14
      Page(s):
    1386-1394

    This paper provides on a theoretical and numerical study of the probability density function (PDF) of the on-off keying (OOK) signals in ASE-limited systems. We present simple closed formulas of PDFs for the optical intensity and the received baseband signal. To confirm the validity of our model, the calculation results yielded by the proposed formulas are compared with those of numerical simulations and the conventional Gaussian model. Our theoretical and numerical results confirm that the signal distribution differs from a Gaussian profile. It is also demonstrated that our model can properly evaluate the signal distribution and the resultant BER performance, especially for systems with an optical bandwidth close to the receiver baseband width.

  • Joint Wireless and Computational Resource Allocation Based on Hierarchical Game for Mobile Edge Computing

    Weiwei XIA  Zhuorui LAN  Lianfeng SHEN  

     
    PAPER-Network

      Pubricized:
    2021/05/14
      Page(s):
    1395-1407

    In this paper, we propose a hierarchical Stackelberg game based resource allocation algorithm (HGRAA) to jointly allocate the wireless and computational resources of a mobile edge computing (MEC) system. The proposed HGRAA is composed of two levels: the lower-level evolutionary game (LEG) minimizes the cost of mobile terminals (MTs), and the upper-level exact potential game (UEPG) maximizes the utility of MEC servers. At the lower-level, the MTs are divided into delay-sensitive MTs (DSMTs) and non-delay-sensitive MTs (NDSMTs) according to their different quality of service (QoS) requirements. The competition among DSMTs and NDSMTs in different service areas to share the limited available wireless and computational resources is formulated as a dynamic evolutionary game. The dynamic replicator is applied to obtain the evolutionary equilibrium so as to minimize the costs imposed on MTs. At the upper level, the exact potential game is formulated to solve the resource sharing problem among MEC servers and the resource sharing problem is transferred to nonlinear complementarity. The existence of Nash equilibrium (NE) is proved and is obtained through the Karush-Kuhn-Tucker (KKT) condition. Simulations illustrate that substantial performance improvements such as average utility and the resource utilization of MEC servers can be achieved by applying the proposed HGRAA. Moreover, the cost of MTs is significantly lower than other existing algorithms with the increasing size of input data, and the QoS requirements of different kinds of MTs are well guaranteed in terms of average delay and transmission data rate.

  • Monocone Antenna with Short Elements on Wideband Choke Structure Using Composite Right/Left-Handed Coaxial Line

    Kazuya MATSUBAYASHI  Naobumi MICHISHITA  Hisashi MORISHITA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/06/01
      Page(s):
    1408-1418

    The composite right/left-handed (CRLH) coaxial line (CL) with wideband electromagnetic band gap (EBG) is applied to the wideband choke structure for a monocone antenna with short elements, and the resulting characteristics are considered. In the proposed antenna, impedance matching and leakage current suppression can be achieved across a wideband off. The lowest frequency (|S11| ≤ -10dB) of the proposed antenna is about the same as that of the monocone antenna on an infinite ground plane. In addition, the radiation patterns of the proposed antenna are close to the figure of eight in wideband. The proposed antenna is prototyped, and the validity of the simulation is verified through measurement.

  • A Beam-Switchable Self-Oscillating Active Integrated Array Antenna Using Gunn Oscillator and Magic-T

    Maodudul HASAN  Eisuke NISHIYAMA  Ichihiko TOYODA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/05/14
      Page(s):
    1419-1428

    Herein, a novel self-oscillating active integrated array antenna (AIAA) is proposed for beam switching X-band applications. The proposed AIAA comprises four linearly polarized microstrip antenna elements, a Gunn oscillator, two planar magic-Ts, and two single-pole single-throw (SPST) switches. The in/anti-phase signal combination approach employing planar magic-Ts is adopted to attain bidirectional radiation patterns in the φ =90° plane with a simple structure. The proposed antenna can switch its beam using the SPST switches. The antenna is analyzed through simulations, and a prototype of the antenna is fabricated and tested to validate the concept. The proposed concept is found to be feasible; the prototype has an effective isotropic radiated power of +15.98dBm, radiated power level of +4.28dBm, and cross-polarization suppression of better than 15dB. The measured radiation patterns are in good agreement with the simulation results.

  • Determining Memory Polynomial Model Parameters from Those of Complex p-th Order Inverse for Designing Predistorter

    Michiharu NAKAMURA  Eisuke FUKUDA  Yoshimasa DAIDO  Keiichi MIZUTANI  Takeshi MATSUMURA  Hiroshi HARADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/06/01
      Page(s):
    1429-1440

    Non-linear behavioral models play a key role in designing digital pre-distorters (DPDs) for non-linear power amplifiers (NLPAs). In general, more complex behavioral models have better capability, but they should be converted into simpler versions to assist implementation. In this paper, a conversion from a complex fifth order inverse of a parallel Wiener (PRW) model to a simpler memory polynomial (MP) model is developed by using frequency domain expressions. In the developed conversion, parameters of the converted MP model are calculated from those of original fifth order inverse and frequency domain statistics of the transmit signal. Since the frequency domain statistics of the transmit signal can be precalculated, the developed conversion is deterministic, unlike the conventional conversion that identifies a converted model from lengthy input and output data. Computer simulations are conducted to confirm that conversion error is sufficiently small and the converted MP model offers equivalent pre-distortion to the original fifth order inverse.

  • Metric-Combining Multiuser Detection Using Replica Cancellation with RTS and Enhanced CTS for High-Reliable and Low-Latency Wireless Communications

    Hideya SO  Kazuhiko FUKAWA  Hayato SOYA  Yuyuan CHANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/06/01
      Page(s):
    1441-1453

    In unlicensed spectrum, wireless communications employing carrier sense multiple access with collision avoidance (CSMA/CA) suffer from longer transmission delay time as the number of user terminals (UTs) increases, because packet collisions are more likely to occur. To cope with this problem, this paper proposes a new multiuser detection (MUD) scheme that uses both request-to-send (RTS) and enhanced clear-to-send (eCTS) for high-reliable and low-latency wireless communications. As in conventional MUD scheme, the metric-combining MUD (MC-MUD) calculates log likelihood functions called metrics and accumulates the metrics for the maximum likelihood detection (MLD). To avoid increasing the number of states for MLD, MC-MUD forces the relevant UTs to retransmit their packets until all the collided packets are correctly detected, which requires a kind of central control and reduces the system throughput. To overcome these drawbacks, the proposed scheme, which is referred to as cancelling MC-MUD (CMC-MUD), deletes replicas of some of the collided packets from the received signals, once the packets are correctly detected during the retransmission. This cancellation enables new UTs to transmit their packets and then performs MLD without increasing the number of states, which improves the system throughput without increasing the complexity. In addition, the proposed scheme adopts RTS and eCTS. One UT that suffers from packet collision transmits RTS before the retransmission. Then, the corresponding access point (AP) transmits eCTS including addresses of the other UTs, which have experienced the same packet collision. To reproduce the same packet collision, these other UTs transmit their packets once they receive the eCTS. Computer simulations under one AP conditions evaluate an average carrier-to-interference ratio (CIR) range in which the proposed scheme is effective, and clarify that the transmission delay time of the proposed scheme is shorter than that of the conventional schemes. In two APs environments that can cause the hidden terminal problem, it is demonstrated that the proposed scheme achieves shorter transmission delay times than the conventional scheme with RTS and conventional CTS.