Jong-Ching HWANG Jung-Chin CHEN Jeng-Shyang PAN Yi-Chao HUANG
The aim of this research is to study the power energy cost reduction of the mobile telecom industry through the supervisor control and data acquisition (SCADA) system application during globalization and liberalization competition. Yet this management system can be proposed functions: operating monitors, the analysis on load characteristics and dropping the cost of management.
Youn-Ok CHOI Zheng-Guo PIAO Geum-Bae CHO
This study examined the performance improvement of a photovoltaic (PV) array and inverter as well as their design, construction, and post-operation and management, which will become the key elements in future PV systems. In addition, it evaluated the performance characteristics of a 50 kW grid-connection PV system in Korea. According to the result of the evaluation, the PV array showed approximately 10% efficiency. The inverter was indicated to operate at > 90% efficiency regularly at > 400 W/m2 irradiation. The capture losses (Lc), system losses (Ls) and performance ratio were approximately 0.9 h/d, 0.3 h/d, and > 70%, respectively, indicating that the system was operating stably. In addition, while the Ls decreased rapidly due to the efficiency of the inverter, the performance ratio decreased markedly with increasing Lc due to the increase in temperature when the reference yield was > 5.0 h/d.
Tadatoshi BABASAKI Toshimitsu TANAKA Toru TANAKA Yousuke NOZAKI Tadahito AOKI Fujio KUROKAWA
High efficiency power feeding systems are effective solutions for reducing the ICT power consumption with reducing power consumption of the ICT equipment and cooling systems. A higher voltage direct current (HVDC) power feeding system prototype was produced. This system is composed of a rectifier equipment, power distribution unit, batteries, and the ICT equipment. The configuration is similar to a -48 V DC power supply system. The output of the rectifier equipment is 100 kW, and the output voltage is 401.4 V. This paper present the configuration of the HVDC power feeding system and discuss its basic characteristics in the prototype system.
Eka FIRMANSYAH Satoshi TOMIOKA Seiya ABE Masahito SHOYAMA Tamotsu NINOMIYA
This paper proposes a new power-factor-correction (PFC) topology, and explains its operation principle, its control mechanism, related application problems followed by experimental results. In this proposed topology, critical-conduction-mode (CRM) interleaved technique is applied to a bridgeless PFC in order to achieve high efficiency by combining benefits of each topology. This application is targeted toward low to middle power applications that normally employs continuous-conduction-mode boost converter.
In this paper we clarify for the boost and the buck-boost converter that the ripple effect is not ignorable for the frequency response, and reveal that it causes the unexpected characteristics where either the phase lag or the phase lead appears depending on the shape of waveform of the ramp generator in the PWM circuit. Eventually the phase margin for the stability drastically changes depending on the slope direction (normal or reverse) of the sawtooth waveform of the ramp generator even in the same circuit configuration. For the ripple effects we propose the general analysis model and analyze them of the boost and the buck-boost converters. As the result we identify that the ripple effects are caused mainly by the variation of the slope and the average of the ripple, and reveal that the both converters have the asymmetric characteristics for the slope direction of the sawtooth waveform of the ramp generator and there is more advantage for the stability in case of the reverse slope direction than in case of the normal one. It also clarified that the effect of ESR of the output capacitor of the converter on the frequency response is different according to the shape of the sawtooth waveforms. The proposed analysis method is validated by the experiments and simulations.
Gamal M. DOUSOKY Masahito SHOYAMA Tamotsu NINOMIYA
This paper investigates the effect of several frequency modulation profiles on conducted-noise reduction in dc-dc converters with programmed switching controller. The converter is operated in variable frequency modulation regime. Twelve switching frequency modulation profiles have been studied. Some of the modulation data are prepared using MATLAB software, and others are generated online. Moreover, all the frequency profiles have been designed and implemented using FPGA and experimentally investigated. The experimental results show that the conducted-noise spreading depends on both the modulation sequence profile and the statistical characteristics of the sequence. A substantial part of the manufacturing cost of power converters for telecommunication applications involves designing filters to comply with the EMI limits. Considering this investigation significantly reduces the filter size.
Daisuke SATOH Kyoko ASHITAGAWA
We present a session initiation protocol (SIP) network design for a voice-over-IP network to prevent congestion caused by people calling friends and family after a disaster. The design increases the capacity of SIP servers in a network by using all of the SIP servers equally. It takes advantage of the fact that equipment for voice data packets is different from equipment for signaling packets in SIP networks. Furthermore, the design achieves simple routing on the basis of telephone numbers. We evaluated the performance of our design in preventing congestion through simulation. We showed that the proposed design has roughly 20 times more capacity, which is 57 times the normal load, than the conventional design if a disaster were to occur in Niigata Prefecture struck by the Chuetsu earthquake in 2004.
Tsutomu MAKABE Taiju MIKOSHI Toyofumi TAKENAKA
We propose novel tree construction algorithms for multicast communication in photonic networks. Since multicast communications consume many more link resources than unicast communications, effective algorithms for route selection and wavelength assignment are required. We propose a novel tree construction algorithm, called the Weighted Steiner Tree (WST) algorithm and a variation of the WST algorithm, called the Composite Weighted Steiner Tree (CWST) algorithm. Because these algorithms are based on the Steiner Tree algorithm, link resources among source and destination pairs tend to be commonly used and link utilization ratios are improved. Because of this, these algorithms can accept many more multicast requests than other multicast tree construction algorithms based on the Dijkstra algorithm. However, under certain delay constraints, the blocking characteristics of the proposed Weighted Steiner Tree algorithm deteriorate since some light paths between source and destinations use many hops and cannot satisfy the delay constraint. In order to adapt the approach to the delay-sensitive environments, we have devised the Composite Weighted Steiner Tree algorithm comprising the Weighted Steiner Tree algorithm and the Dijkstra algorithm for use in a delay constrained environment such as an IPTV application. In this paper, we also give the results of simulation experiments which demonstrate the superiority of the proposed Composite Weighted Steiner Tree algorithm compared with the Distributed Minimum Hop Tree (DMHT) algorithm, from the viewpoint of the light-tree request blocking.
Stephan WANKE Hiroshi SAITO Yutaka ARAKAWA Shinsuke SHIMOGAWA
We present a new paging algorithm for wireless networks with ultra-short-range radio access links (picocells). The ubiquitous office (u-office) network is a good example of such a network, and we present some u-office example applications. In addition, we show that conventional paging algorithms are not feasible in such networks. Therefore, we derived a new paging algorithm from the measurement results of an experimental sensor network with short-range wireless links deployed in our office. We equipped persons with sensors and deployed sensor readers at selected places in our office. The sensors transmit messages to the sensor readers at regular intervals. If no sensor reader is in range, the message is lost. Our main observation is that, if a picocell shows an attraction property to a certain person, the residence time of an attached mobile terminal is not gamma distributed (as described in the literature) and the probability of long-lasting residences increases. Thus, if the residence time is larger than a certain threshold, the probability of a long-lasting residence time increases if a sensor reader location has an attraction property to a person. Based on this observation, our proposed paging algorithm registers the location of the mobile terminal only when the residence time in the cell is longer than a predetermined constant. By appropriately setting this constant, we can significantly reduce the registration message frequency while ensuring that the probability of the network successfully connecting to a mobile terminal remains high.
Li LI Yongpan LIU Huazhong YANG Hui WANG
Time synchronization is an essential service for wireless sensor networks (WSNs). However, fixed-period time synchronization can not serve multiple users efficiently in terms of energy consumption. This paper proposes a lightweight precision-adaptive protocol for cluster-based multi-user networks. It consists of a basic average time synchronization algorithm and an adaptive control loop. The basic average time synchronization algorithm achieves 1 µs instantaneous synchronization error performance. It also prolongs re-synchronization period by taking the average of two specified nodes' local time to be cluster global time. The adaptive control loop realizes diverse levels of synchronization precision based on the proportional relationship between sync error and re-synchronization period. Experimental results show that the proposed precision-adaptive protocol can respond to the sync error bound change within 2 steps. It is faster than the exponential convergence of the adaptive protocols based on multiplicative iterations.
This paper is concerned with the packet transmission scheduling problem for repeating all-to-all broadcasts in Underwater Sensor Networks (USN) in which there are n nodes in a transmission range. All-to-all communication is one of the most dense communication patterns. It is assumed that each node has the same size packet. Unlike the terrestrial scenarios, the propagation time in underwater communications is not negligible. We define all-to-all broadcast as the one where every node transmits packets to all the other nodes in the network except itself. So, there are in total n(n - 1) packets to be transmitted for an all-to-all broadcast. The optimal transmission scheduling is to schedule in a way that all packets can be transmitted within the minimum time. In this paper, we propose an efficient packet transmission scheduling algorithm for underwater acoustic communications using the property of long propagation delay.
Yoshihisa KONDO Hiroyuki YOMO Shinji YAMAGUCHI Peter DAVIS Ryu MIURA Sadao OBANA Seiichi SAMPEI
This paper proposes multipoint-to-multipoint (MPtoMP) real-time broadcast transmission using network coding for ad-hoc networks like video game networks. We aim to achieve highly reliable MPtoMP broadcasting using IEEE 802.11 media access control (MAC) that does not include a retransmission mechanism. When each node detects packets from the other nodes in a sequence, the correctly detected packets are network-encoded, and the encoded packet is broadcasted in the next sequence as a piggy-back for its native packet. To prevent increase of overhead in each packet due to piggy-back packet transmission, network coding vector for each node is exchanged between all nodes in the negotiation phase. Each user keeps using the same coding vector generated in the negotiation phase, and only coding information that represents which user signal is included in the network coding process is transmitted along with the piggy-back packet. Our simulation results show that the proposed method can provide higher reliability than other schemes using multi point relay (MPR) or redundant transmissions such as forward error correction (FEC). We also implement the proposed method in a wireless testbed, and show that the proposed method achieves high reliability in a real-world environment with a practical degree of complexity when installed on current wireless devices.
Pham Thanh GIANG Kenji NAKAGAWA
The IEEE 802.11 MAC standard for wireless ad hoc networks adopts Binary Exponential Back-off (BEB) mechanism to resolve bandwidth contention between stations. BEB mechanism controls the bandwidth allocation for each station by choosing a back-off value from one to CW according to the uniform random distribution, where CW is the contention window size. However, in asymmetric multi-hop networks, some stations are disadvantaged in opportunity of access to the shared channel and may suffer severe throughput degradation when the traffic load is large. Then, the network performance is degraded in terms of throughput and fairness. In this paper, we propose a new cross-layer scheme aiming to solve the per-flow unfairness problem and achieve good throughput performance in IEEE 802.11 multi-hop ad hoc networks. Our cross-layer scheme collects useful information from the physical, MAC and link layers of own station. This information is used to determine the optimal Contention Window (CW) size for per-station fairness. We also use this information to adjust CW size for each flow in the station in order to achieve per-flow fairness. Performance of our cross-layer scheme is examined on various asymmetric multi-hop network topologies by using Network Simulator (NS-2).
Stream Control Transmission Protocol (SCTP) is a new transport layer protocol for the next generation Internet. SCTP is a connection-oriented protocol that carries over TCP's features but also supports UDP-like message-oriented data transmission. In this paper, we make use of SCTP's multi-streaming feature to transmit MPEG-4 video efficiently, and evaluate its transmission performance under the policy with/without differentiated retransmission. Moreover, to enhance the communication quality, we extend SCTP multi-streaming to realize selective retransmission policy. Our extension utilizes packet-by-packet timestamps to control retransmission of lost packets. By computer simulation, we show that SCTP can (1) improve the video quality by exploiting the multi-streaming and partial reliability features, (2) enhance the video transmission quality by adjusting SCTP fast retransmit threshold, and (3) SCTP with our selective retransmission extension can further improve the whole performance.
In this paper a new electromagnetic (EM) interference analysis is proposed using the total harmonic distortion (THD) measurement of the audio signal by the 900 MHz cordless telephones. The cordless telephone network in 900 MHz was built up to be weak in EM interference. 400 and 800 Hz of the sine-wave signal were used in transmitter (TX) system, and the receiver (RX) system was exposed to the EM interference. The THD value varies as the level of the exposed EM interference changes. The model of the cordless telephone also affects the THD value. By using fluctuation of the THD value depending on the amount of the exposure, the threshold value of the interference electric field strength was derived. Based on the derived threshold value of the electric field strength, validity of the regulation value for low power radio devices by CISPR 22 [CLASS B] and FCC is discussed.
Dongwoo LEE Young Seok JUNG Jae Hong LEE
This paper proposes cooperative coding using cyclic delay diversity (CDD) for OFDM systems. The cooperative diversity is combined with channel coding while CDD is applied to the cooperative transmission of the multiple relays to improve the beneficial effects of the cooperating relays. Analyses of frame error probability (FEP) and the average channel power of the proposed scheme are shown. Simulation results show the frame error rate (FER) of the proposed scheme. The proposed scheme provides not only a simple code design and low system complexity compared to conventional space-time processing, but better FER and diversity gain compared to direct transmission and conventional cooperative coding without CDD.
This paper discusses an efficient discrete model for nonlinear RF power amplifier (PA) with long-term memory effects and analyzes its error. The procedure of converting RF signals and systems into a discrete domain is explained for a discrete baseband memory polynomial model. Unlike a previous simple memory polynomial model, the proposed discrete model has two different sampling frequencies: one for nonlinear system with long-term memory effects and one for input signal. A method to choose an optimal sampling frequency for the system and a discrete memory depth is proposed to minimize the sensitivity of the system for perturbation of the measured data. A two-dimensional sensitivity function which is a product of relative residual and matrix condition number is defined for least square problem of the proposed model. Examples with a wideband WiBro 3FA signal and a WCDMA 4FA signal for nonlinear transmitters are presented to describe the overall procedure and effectiveness of the proposed scheme.
We describe a user scheduling scheme suitable for zero-forcing beamforming (ZFBF) downlink multiuser multiple-input multiple-output (MU-MIMO) orthogonal frequency-division multiplexing (OFDM) transmissions in time-division-duplex distributed antenna systems. This user scheduling scheme consists of inter-cell-interference mitigation scheduling by using fractional frequency reuse, proportional fair scheduling in the OFDM frequency domain, and high-capacity ZFBF-MU-MIMO scheduling by using zero-forcing with selection (ZFS). Simulation results demonstrate in a severe user-distribution condition that includes cell-edge users that the proposed user scheduling scheme achieves high average cell throughputs close to that provided by only ZFS and that it also achieves almost the same degree of user fairness as round-robin user scheduling.
Li YUE Chenggao HAN Nalin S. WEERASINGHE Takeshi HASHIMOTO
This paper studies the performance of a coded convolutional spreading CDMA system with cyclic prefix (CS-CDMA/CP) combined with the zero correlation zone code generated from the M-sequence (M-ZCZ code) for downlink transmission over a multipath fast fading channel. In particular, we propose a new pilot-aided channel estimation scheme based on the shift property of the M-ZCZ code and show the robustness of the scheme against fast fading through comparison with the W-CDMA system empolying time-multiplexed pilot signals.
In the conventional multi-input multi-output (MIMO) communication systems, most of the antenna selection methods considered are suitable only for spatially separated uni-polarized system under Rayleigh fading channel in non-line of sight (NLOS) condition. There have a few antenna selection schemes for the cross-polarized system in LOS condition and Ricean fading channel, and no antenna selection scheme for the MIMO channel with both LOS and NLOS. In the practical MIMO channel case, influence of LOS and NLOS conditions in the channel can vary from time to time according to the channel parameters and user movement in the system. Based on these influences and channel condition, uni-polarized system may outperform a cross-polarized. Thus, we should consider this kind of practical MIMO channel environment when developing the antenna selection scheme. Moreover, no research work has been done on reducing the complexity of antenna selection for this kind of practical MIMO channel environment. In this paper, reduced complexity in antenna selection is proposed to give the higher throughput in the practical MIMO channel environment. In the proposed scheme, suitable polarized antennas are selected based on the calculation of singular value decomposition (SVD) of channel matrix and then adaptive bit loading is applied. Simulation results show that throughput of the system can be improved under the constraint of target BER and total transmit power of the MIMO system.
Eunchul YOON Joon-Tae KIM Taewon HWANG
In a closed-loop scenario, the performance of transmit-diversity schemes for a multiple antenna system depends on the reliability of the channel state information (CSI). However, estimating the reliability of the instantaneous CSI at the transmitter is a challenging task. In this paper, we propose a robust transmit-diversity scheme for the case when the instantaneous CSI available at the transmitter is imperfect and its reliability is unknown to the transmitter. We show by simulation that our proposed scheme is efficient when the CSI reliability varies arbitrarily in every channel realization.
Yoon-Su JEONG Yong-Tae KIM Jae-Min SOHN Gil-Cheol PARK Sang-Ho LEE
In recent years, the usage of IPTV (Internet Protocol Television) has been increased. The reason is a technological convergence of broadcasting and telecommunication delivering interactive applications and multimedia content through high speed Internet connections. The main critical point of IPTV security requirements is subscriber authentication. That is, IPTV service should have the capability to identify the subscribers to prohibit illegal access. Currently, IPTV service does not provide a sound authentication mechanism to verify the identity of its wireless users (or devices). This paper focuses on a lightweight authentication and key establishment protocol based on the use of hash functions. The proposed approach provides effective authentication for a mobile user with a RFID tag whose authentication information is communicated back and forth with the IPTV authentication server via IPTV set-top box (STB). That is, the proposed protocol generates user's authentication information that is a bundle of two public keys derived from hashing user's private keys and RFID tag's session identifier, and adds 1 bit to this bundled information for subscriber's information confidentiality before passing it to the authentication server.
Takashi MIWA Shun OGIWARA Yoshiki YAMAKOSHI
The importance of respiratory monitoring systems during sleep have increased due to early diagnosis of sleep apnea syndrome (SAS) in the home. This paper presents a simple respiratory monitoring system suitable for home use having 3D ranging of targets. The range resolution and azimuth resolution are obtained by a stepped frequency transmitting signal and MIMO arrays with preferred pair M-sequence codes doubly modulating in transmission and reception, respectively. Due to the use of these codes, Gold sequence codes corresponding to all the antenna combinations are equivalently modulated in receiver. The signal to interchannel interference ratio of the reconstructed image is evaluated by numerical simulations. The results of experiments on a developed prototype 3D-MIMO radar system show that this system can extract only the motion of respiration of a human subject 2 m apart from a metallic rotatable reflector. Moreover, it is found that this system can successfully measure the respiration information of sleeping human subjects for 96.6 percent of the whole measurement time except for instances of large posture change.
Wei FENG Yanmin WANG Yunzhou LI Shidong ZHOU Jing WANG
In this letter, we address the problem of downlink power allocation for the generalized distributed antenna system (DAS) with cooperative clusters. Considering practical applications, we assume that only the large-scale channel state information is available at the transmitter. The power allocation scheme is investigated with the target of ergodic achievable sum rate maximization. Based on some approximations and the Rayleigh Quotient Theory, the simple selective power allocation scheme is derived for the low SNR scenario and the high SNR scenario, respectively. The methods are applicable in practice due to their low complexity.
Minjae KIM Heung-Ryeol YOU Hyuckjae LEE
The code division multiplexing (CDM)-based MIMO channel sounder architecture is efficient at measuring fast fading MIMO channels. This paper examines loosely synchronous (LS), CAZAC, Kasami, and Chaotic sequences as probing signals in the CDM architecture. After comparing the performance of the channel measurement among the sequences, it is concluded that the LS sequences are the most appropriate codes for the probing signals. However, because LS sequences have a significant drawback in that the number of transmit antennas is limited to less than 4, we propose using a hybrid architecture combining CDM with TDM for supporting a greater number of transmit antennas. The simulation results show that the proposed scheme can improve the measurement performance when more than 4 transmit antennas are used.
Kazuo HOGARI Yusuke YAMADA Kunihiro TOGE
This letter proposes novel optical fiber cables with extremely small cable diameter that employs rollable 20-fiber ribbons, which will improve fiber ribbon and cable productivity compared with optical fiber cable employing rollable 4-fiber ribbons. We fabricated the cables and investigated its feasibility in terms of high-count compactness, cable productivity, fiber strain induced by cable bending, optical loss characteristics and capacity for mass splicing. As a result, we confirmed the excellence of these cables and their fiber splicing workability.
Euisin LEE Soochang PARK Fucai YU Sang-Ha KIM
In-network data aggregation is one of the most important issues for achieving energy-efficiency in wireless sensor networks since sensor nodes in the surrounding region of an event may generate redundant sensed data. The redundant sensed data should be aggregated before being delivered to the sink to reduce energy consumption. Which node should be selected as a Data Aggregation Node (DAN) for achieving the best energy efficiency is a difficult issue. To address this issue, this letter proposes a scheme to select a DAN for achieving energy-efficiency in an event region. The proposed scheme uses an analytical model to select the sensor node that has the lowest total energy consumption for gathering data from sensor nodes and for forwarding aggregated data to a sink, as a DAN. Analysis and simulation results show that the proposed scheme is superior to other schemes.
Seongyong AHN Hyejeong HONG HyunJin KIM Jin-Ho AHN Dongmyong BAEK Sungho KANG
This paper proposes a new pattern matching architecture with multi-character processing for deep packet inspection. The proposed pattern matching architecture detects the start point of pattern matching from multi-character input using input text alignment. By eliminating duplicate hardware components using process element tree, hardware cost is greatly reduced in the proposed pattern matching architecture.
Chunxiao JIANG Shuai FAN Canfeng CHEN Jian MA Yong REN
Cognitive radio has emerged as an efficient approach to reusing the licensed spectrums. How to appropriately set parameters of secondary user (SU) plays a rather important role in constructing cognitive radio networks. In this letter, we have analyzed the theoretical value of SUs' density, which provides a standard for controlling the number of SUs around one primary receiver, in order to guarantee that primary communication links do not experience excessive interference. The simulation result of secondary density well matches with the theoretical result derived from our analysis. Additionally, the achievable rate of secondary user under density control is also analyzed and simulated.
The performance of the least-mean-square (LMS) beamformer is heavily dependent on the choice of the step-size, for it governs the convergence rate and steady-state excess mean squared error. To meet the conflicting requirement of low misadjustment, especially for the beamformer being modified in response to the multipath environmental changes, it needs to be controlled in a proper way. In this letter, we present an efficient adaptive step-size subarray LMS to achieve good performance. Simulation results are provided for illustrating the effectiveness of the proposed scheme.
This letter presents a low-profile printed monopole wideband antenna for mobile terminals. The proposed antenna is simply structured with an inverted-L strip, which occupies the small area of 3
Mohammad Tariqul ISLAM Ahmed Toaha MOBASHSHER Norbahiah MISRAN
In this paper, a novel feeding technique is proposed to feed a printed rectangular ring patch antenna that attains high gain in two bands simultaneously. The prototype antenna exhibits good impedance bandwidths satisfying ISM 2.45/5.8 GHz achieving maximum gain of 9.56 and 10.17 dBi, respectively, with a stable radiation pattern.
Deok-Kyu HWANG Sooyong CHOI Keum-Chan WHANG
A transceiver employing hierarchical constellation encodes two hierarchies with different levels of protection and selectively decodes one or both of them, resulting in constellation inconsistency of encoding and decoding. Therefore, a conventional ordered successive interference cancellation (OSIC) receiver, which restores the signals as they are transmitted, can not be compatible with the constellation inconsistency. To mitigate this problem, an OSIC detector with the individual received bit rate per data stream is first designed. To further improve the error performance, the proposed detector is modified, for which distinct criteria are used for demodulation and cancellation. It is shown that the proposed detector achieves spectrally efficient detection while guaranteeing reliable communication.
Tong WU Ying WANG Yushan PEI Gen LI Ping ZHANG
This letter proposes an intra-cell partial spectrum reuse (PSR) scheme for cellular OFDM-relay networks. The proposed method aims to increase the system throughput, while the SINR of the cell edge users can be also promoted by utilizing the PSR scheme. The novel pre-allocation factor γ not only indicates the flexibility of PSR, but also decreases the complexity of the reuse mechanism. Through simulations, the proposed scheme is shown to offer superior performances in terms of system throughput and SINR of last 5% users.
In this letter, a low complexity multi-cell joint channel estimation (MJCE) scheme is proposed. With proper arrangement of the multi-cell midamble matrix and channel impulse response (CIR) vector, the MJCE operation is formulated to solve a block-Toeplitz linear system. The block-Levinson algorithm is adopted to solve this problem instead of the Cholesky algorithm. Our results show that the proposed MJCE scheme can be a practical choice with significantly lower complexity, compared with the previous schemes with the Cholesky algorithm.
Proportional fair scheduling attains a graceful trade-off between fairness among users and total system throughput. It is simple to implement in single carrier transmission systems, while changes to a prohibitively complex combinatorial problem for multi-carrier transmission systems. This letter addresses a couple of conditions that approximate multi-carrier proportional fair scheduling (MCPF) as carrier-by-carrier proportional fair scheduling (CCPF), which has much lower complexity than MCPF. Numerical results show that the proportional fairness metric of CCPF approaches to that of MCPF for those conditions.
Joontae KIM Seung-Ri JIN Dong-Jo PARK
A novel method is proposed that can estimate the tag population in Radio Frequency Identification (RFID) systems by using a Hadamard code for the tag response. We formulate the maximum likelihood estimator for the tag population using the number of observed footprints. The lookup table of the estimation algorithm has low complexity. Simulation results show that the proposed estimator performs considerably better than the conventional schemes.
Ha-Nguyen VU Le Thanh TAN Hyung Yun KONG
In this paper, we propose an exact analytical technique to evaluate the average capacity of a dual-hop OFDM relay system with decode-and-forward protocol in an independent and identical distribution (i.i.d.) Rayleigh fading channel. Four schemes, (no) matching "and" or "or" (no) power allocation, will be considered. First, the probability density function (pdf) for the end-to-end power channel gain for each scheme is described. Then, based on these pdf functions, we will give the expressions of the average capacity. Monte Carlo simulation results will be shown to confirm the analytical results for both the pdf functions and average capacities.
Xuan-Dao NGUYEN Mun-Ho JEONG Bum-Jae YOU Sang-Rok OH
This paper proposes a self-taught classifier of gateways for hybrid SLAM. Gateways are detected and recognized by the self-taught classifier, which is a SVM classifier and self-taught in that its training samples are produced and labeled without user's intervention. Since the detection of gateways at the topological boundaries of an acquired metric map reduces computational complexity in partitioning the metric map into sub-maps as compared with previous hybrid SLAM approaches using spectral clustering methods, from O(2n) to O(n), where n is the number of sub-maps. This makes possible real time hybrid SLAM even for large-scale metric maps. We have confirmed that the self-taught classifier provides satisfactory consistency and computationally efficiency in hybrid SLAM through different experiments.
Chul Keun KIM Doug Young SUH Gwang-Hoon PARK
We propose a new channel adaptive distributed video coding algorithm, which is adaptive to time-varying available bitrate and packet loss ratio. The proposed method controls the quantization parameter according to channel condition of especially error-prone mobile channel. Simulation shows that the proposed algorithm outperforms the conventional rate-control-only algorithm.