The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hao LI(78hit)

61-78hit(78hit)

  • Novel High Performance Scheduling Algorithms for Crosspoint Buffered Crossbar Switches

    Xiaoting WANG  Yiwen WANG  Shichao LI  Ping LI  

     
    PAPER-Switching System

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2105-2115

    The crossbar-based switch fabric is widely used in today's high performance switches, due to its internally nonblocking and simply implementation properties. Usually there are two main switching architectures for crossbar-based switch fabric: internally bufferless crossbar switch and crosspoint buffered crossbar switch. As internally bufferless crossbar switch requires a complex centralized scheduler which limits its scalability to high speeds, crosspoint buffered crossbar switch has gained more attention because of its simpler distributed scheduling algorithm and better switching performance. However, almost all the scheduling algorithms proposed previously for crosspoint buffered crossbar switch either have unsatisfactory scheduling performance under non-uniform traffic patterns or show poor service fairness between input traffic flows. In order to overcome the disadvantages of existing algorithms, in this paper we propose two novel high performance scheduling algorithms named MCQF_RR and IMCQF_RR for crosspoint buffered crossbar switches. Both algorithms have a time complexity of O(log N), where N is the number of input/output ports of the switch. MCQF_RR takes advantage of the combined weight information about queue length and service waiting time of input queues to perform scheduling. In order to further reduce the scheduling complexity and make it feasible for high speed switches, IMCQF_RR uses the compressed queue length information instead of original queue length information to schedule cells in input VOQs. Simulation results show that our novel scheduling algorithms MCQF_RR and IMCQF_RR can demonstrate excellent delay performance comparable to existing high performance scheduling algorithms under both uniform and non-uniform traffic patterns, while maintain good service fairness performance under severe non-uniform traffic patterns.

  • An Application of Vector Coding with IBI Cancelling Demodulator and Code Elimination to Delay Spread MIMO Channels

    Zhao LI  Hiroshi FURUKAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:6
      Page(s):
    2153-2159

    Vector Coding (VC) is a novel vector modulation scheme that partitions a SISO (Single-Input Single-Output) channel into orthogonal subchannels by singular value decomposition (SVD). Because the orthogonal transmissions enabled by VC cannot cope with inter block interference (IBI) that is inevitable in delay spread channels, this paper proposes an IBI cancelling demodulator which can remove IBI by an iterative technique. We also show that code elimination in which insignificant eigencodes with lowermost eigenvalues are intentionally removed from transmission vectors greatly reduces BER (Bit Error Rate). The VC which utilizes the IBI cancelling demodulator and code elimination to reduce BER is compared with the original VC in not only delay spread SISO channels but also delay spread MIMO (Multi-Input Multi-Output) channels while emphasis is placed on the MIMO cases. Simulation results show that, under a predetermined BER, the enhanced MIMO-VC can improve effective transmission rate than the natural extension of VC to delay spread MIMO channels.

  • A 30 V High Voltage NMOS Structure Design in Standard 5 V CMOS Processes

    Tzu-Chao LIN  Jiin-Chuan WU  

     
    LETTER-Semiconductor Materials and Devices

      Vol:
    E86-C No:11
      Page(s):
    2341-2345

    This paper describes the robust design of the 30 V high voltage NMOS (HVNMOS) structure implemented in a 0.6 µm 5 V standard CMOS processes without any additional masks or process steps. The structure makes use of the field oxide (FOX) and light doping N-well to increase the drain to gate and drain to bulk breakdown voltages, respectively. By varying the six spacing parameters: the channel length, gate overlap FOX, N-well overlap channel length, poly to the active area of the drain (OD2), metal extend beyond the OD2 and N-well extend beyond the OD2 in HVNMOS structure, the breakdown voltage can be improved. The experimental results show that the breakdown voltage of the normal NMOS is 11 V, and the breakdown voltage of the HVNMOS is increased to over 30 V. With the optimized layout parameters of the HVNMOS, it can be increased to 38 V.

  • Roughness Classification with Aggregated Discrete Fourier Transform

    Chao LIANG  Wenming YANG  Fei ZHOU  Qingmin LIAO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:10
      Page(s):
    2769-2779

    In this paper, we propose a texture descriptor based on amplitude distribution and phase distribution of the discrete Fourier transform (DFT) of an image. One dimensional DFT is applied to all the rows and columns of an image. Histograms of the amplitudes and gradients of the phases between adjacent rows/columns are computed as the feature descriptor, which is called aggregated DFT (ADFT). ADFT can be easily combined with completed local binary pattern (CLBP). The combined feature captures both global and local information of the texture. ADFT is designed for isotropic textures and demonstrated to be effective for roughness classification of castings. Experimental results show that the amplitude part of ADFT is also discriminative in describing anisotropic textures and it can be used as a complementary descriptor of local texture descriptors such as CLBP.

  • Attention-Guided Spatial Transformer Networks for Fine-Grained Visual Recognition

    Dichao LIU  Yu WANG  Jien KATO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/09/04
      Vol:
    E102-D No:12
      Page(s):
    2577-2586

    The aim of this paper is to propose effective attentional regions for fine-grained visual recognition. Based on the Spatial Transformers' capability of spatial manipulation within networks, we propose an extension model, the Attention-Guided Spatial Transformer Networks (AG-STNs). This model can guide the Spatial Transformers with hard-coded attentional regions at first. Then such guidance can be turned off, and the network model will adjust the region learning in terms of the location and scale. Such adjustment is conditioned to the classification loss so that it is actually optimized for better recognition results. With this model, we are able to successfully capture detailed attentional information. Also, the AG-STNs are able to capture attentional information in multiple levels, and different levels of attentional information are complementary to each other in our experiments. A fusion of them brings better results.

  • RBM-LBP: Joint Distribution of Multiple Local Binary Patterns for Texture Classification

    Chao LIANG  Wenming YANG  Fei ZHOU  Qingmin LIAO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2016/08/19
      Vol:
    E99-D No:11
      Page(s):
    2828-2831

    In this letter, we propose a novel framework to estimate the joint distribution of multiple Local Binary Patterns (LBPs). Multiple LBPs extracted from the same central pixel are first encoded using handcrafted encoding schemes to achieve rotation invariance, and the outputs are further encoded through a pre-trained Restricted Boltzmann Machine (RBM) to reduce the dimension of features. RBM has been successfully used as binary feature detectors and the binary-valued units of RBM seamlessly adapt to LBP. The proposed feature is called RBM-LBP. Experiments on the CUReT and Outex databases show that RBM-LBP is superior to conventional handcrafted encodings and more powerful in estimating the joint distribution of multiple LBPs.

  • Iterative Adversarial Inference with Re-Inference Chain for Deep Graphical Models

    Zhihao LIU  Hui YIN  Hua HUANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/05/07
      Vol:
    E102-D No:8
      Page(s):
    1586-1589

    Deep Graphical Model (DGM) based on Generative Adversarial Nets (GANs) has shown promise in image generation and latent variable inference. One of the typical models is the Iterative Adversarial Inference model (GibbsNet), which learns the joint distribution between the data and its latent variable. We present RGNet (Re-inference GibbsNet) which introduces a re-inference chain in GibbsNet to improve the quality of generated samples and inferred latent variables. RGNet consists of the generative, inference, and discriminative networks. An adversarial game is cast between the generative and inference networks and the discriminative network. The discriminative network is trained to distinguish between (i) the joint inference-latent/data-space pairs and re-inference-latent/data-space pairs and (ii) the joint sampled-latent/generated-data-space pairs. We show empirically that RGNet surpasses GibbsNet in the quality of inferred latent variables and achieves comparable performance on image generation and inpainting tasks.

  • Reflection and Rotation Invariant Uniform Patterns for Texture Classification

    Chao LIANG  Wenming YANG  Fei ZHOU  Qingmin LIAO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/02/05
      Vol:
    E99-D No:5
      Page(s):
    1400-1403

    In this letter, we propose a novel texture descriptor that takes advantage of an anisotropic neighborhood. A brand new encoding scheme called Reflection and Rotation Invariant Uniform Patterns (rriu2) is proposed to explore local structures of textures. The proposed descriptor is called Oriented Local Binary Patterns (OLBP). OLBP may be incorporated into other varieties of Local Binary Patterns (LBP) to obtain more powerful texture descriptors. Experimental results on CUReT and Outex databases show that OLBP not only significantly outperforms LBP, but also demonstrates great robustness to rotation and illuminant changes.

  • Recursive Multi-Scale Channel-Spatial Attention for Fine-Grained Image Classification

    Dichao LIU  Yu WANG  Kenji MASE  Jien KATO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/12/22
      Vol:
    E105-D No:3
      Page(s):
    713-726

    Fine-grained image classification is a difficult problem, and previous studies mainly overcome this problem by locating multiple discriminative regions in different scales and then aggregating complementary information explored from the located regions. However, locating discriminative regions introduces heavy overhead and is not suitable for real-world application. In this paper, we propose the recursive multi-scale channel-spatial attention module (RMCSAM) for addressing this problem. Following the experience of previous research on fine-grained image classification, RMCSAM explores multi-scale attentional information. However, the attentional information is explored by recursively refining the deep feature maps of a convolutional neural network (CNN) to better correspond to multi-scale channel-wise and spatial-wise attention, instead of localizing attention regions. In this way, RMCSAM provides a lightweight module that can be inserted into standard CNNs. Experimental results show that RMCSAM can improve the classification accuracy and attention capturing ability over baselines. Also, RMCSAM performs better than other state-of-the-art attention modules in fine-grained image classification, and is complementary to some state-of-the-art approaches for fine-grained image classification. Code is available at https://github.com/Dichao-Liu/Recursive-Multi-Scale-Channel-Spatial-Attention-Module.

  • A Genetic Approach for Maximum Independent Set Problems

    Akio SAKAMOTO  Xingzhao LIU  Takashi SHIMAMOTO  

     
    PAPER

      Vol:
    E80-A No:3
      Page(s):
    551-556

    Genetic algorithms have been shown to be very useful in a variety of search and optimization problems. In this paper we present a genetic algorithm for maximum independent set problem. We adopt a permutation encoding with a greedy decoding to solve the problem. The DIMACS benchmark graphs are used to test our algorithm. For most graphs solutions found by our algorithm are optimal, and there are also a few exceptions that solutions found by the algorithm are almost as large as maximum clique sizes. We also compare our algorithm with a hybrid genetic algorithm, called GMCA, and one of the best existing maximum clique algorithms, called CBH. The exiperimental results show that our algorithm outperformed two of the best approaches by GMCA and CBH in final solutions.

  • Handling Deafness Problem of Scheduled Multi-Channel Polling MACs

    Fulong JIANG  Hao LIU  Longxing SHI  

     
    PAPER-Network

      Vol:
    E95-B No:7
      Page(s):
    2323-2329

    Combining scheduled channel polling with channel diversity is a promising way for a MAC protocol to achieve high energy efficiency and performance under both light and heavy traffic conditions. However, the deafness problem may cancel out the benefit of channel diversity. In this paper, we first investigate the deafness problem of scheduled multi-channel polling MACs with experiments. Then we propose and evaluate two schemes to handle the deafness problem. Our experiment shows that deafness is a significant reason for performance degradation in scheduled multi-channel polling MACs. A proper scheme should be chosen depending on the traffic pattern and the design objective.

  • A Business Service Model of Smart Home Appliances Participating in the Peak Shaving and Valley Filling Based on Cloud Platform

    Mingrui ZHU  Yangjian JI  Wenjun JU  Xinjian GU  Chao LIU  Zhifang XU  

     
    PAPER

      Pubricized:
    2021/04/22
      Vol:
    E104-D No:8
      Page(s):
    1185-1194

    With the development of power market demand response capability, load aggregators play a more important role in the coordination between power grid and users. They have a wealth of user side business data resources related to user demand, load management and equipment operation. By building a business model of business data resource utilization and innovating the content and mode of intelligent power service, it can guide the friendly interaction between power supply, power grid and load, effectively improve the flexibility of power grid regulation, speed up demand response and refine load management. In view of the current situation of insufficient utilization of business resources, low user participation and imperfect business model, this paper analyzes the process of home appliance enterprises participating in peak shaving and valley filling (PSVF) as load aggregators, and expounds the relationship between the participants in the power market; a business service model of smart home appliance participating in PSVF based on cloud platform is put forward; the market value created by home appliance business resources for each participant under the joint action of market-oriented means, information technology and power consumption technology is discussed, and typical business scenarios are listed; taking Haier business resource analysis as an example, the feasibility of the proposed business model in innovating the content and value realization of intelligent power consumption services is proved.

  • Privacy-Enhanced Similarity Search Scheme for Cloud Image Databases

    Hao LIU  Hideaki GOTO  

     
    LETTER-Information Network

      Pubricized:
    2016/09/12
      Vol:
    E99-D No:12
      Page(s):
    3188-3191

    The privacy of users' data has become a big issue for cloud service. This research focuses on image cloud database and the function of similarity search. To enhance security for such database, we propose a framework of privacy-enhanced search scheme, while all the images in the database are encrypted, and similarity image search is still supported.

  • Improving Hessian Matrix Detector for SURF

    Yitao CHI  Zhang XIONG  Qing CHANG  Chao LI  Hao SHENG  

     
    LETTER-Pattern Recognition

      Vol:
    E94-D No:4
      Page(s):
    921-925

    An advanced interest point detector is proposed to improve the Hessian-Matrix based detector of the SURF algorithm. Round-like shapes are utilized as the filter shape to calculate of the Hessian determinant. Dxy can be acquired from approximate round areas, while the regions for computing Dyy or Dxx are designed with the consideration to symmetry and a balance of pixel number. Experimental results indicate that the proposed method has higher repeatability than the one used in SURF, especially in the aspects of rotation and viewpoint, due to the centrosymmetry of the proposed filter shapes. The results of image matching also show that more precision can be gained with the application of proposed detector.

  • Analytical and Numerical Study of the Impact of Halos on Surrounding-Gate MOSFETs

    Zunchao LI  Ruizhi ZHANG  Feng LIANG  Zhiyong YANG  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E92-C No:4
      Page(s):
    558-563

    Halo doping profile is used in nanoscale surrounding-gate MOSFETs to suppress short channel effect and improve current driving capability. Analytical surface potential and threshold voltage models are derived based on the analytical solution of Poisson's equation for the fully depleted symmetric and asymmetric halo-doped MOSFETs. The validity of the analytical models is verified using 3D numerical simulation. The performance of the halo-doped MOSFETs are studied and compared with the uniformly doped surrounding-gate MOSFETs. It is shown that the halo-doped channel can suppress threshold voltage roll-off and drain-induced barrier lowering, and improve carrier transport efficiency. The asymmetric halo structure is better in suppressing hot carrier effect than the symmetric halo structure.

  • A Novel Construction of 2-Resilient Rotation Symmetric Boolean Functions

    Jiao DU  Shaojing FU  Longjiang QU  Chao LI  Tianyin WANG  Shanqi PANG  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/08/03
      Vol:
    E105-A No:2
      Page(s):
    93-99

    In this paper, by using the properties of the cyclic Hadamard matrices of order 4t, an infinite class of (4t-1)-variable 2-resilient rotation symmetric Boolean functions is constructed, and the nonlinearity of the constructed functions are also studied. To the best of our knowledge, this is the first class of direct constructions of 2-resilient rotation symmetric Boolean functions. The spirit of this method is different from the known methods depending on the solutions of an equation system proposed by Du Jiao, et al. Several situations are examined, as the direct corollaries, three classes of (4t-1)-variable 2-resilient rotation symmetric Boolean functions are proposed based on the corresponding sequences, such as m sequences, Legendre sequences, and twin primes sequences respectively.

  • Throughput Analysis of the IEEE 802.11 DCF under Both Saturated and Non-saturated Conditions

    Chao LIU  Mengtian RONG  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E92-B No:6
      Page(s):
    2168-2174

    The IEEE 802.11 standard has been extensively deployed all over the world. Many studies have been put on its performance, especially throughput. Most research focused on the analysis of saturated throughput, but non-saturated situation is more usual in practice. By extending a saturation throughput model, a concise and novel model is proposed in this paper, which can be used to analyze both saturated and non-saturated conditions. Moreover, the model can also deal with the heterogeneous condition, which allows stations to have different traffic. Different access mechanisms and packet payloads are used in simulation to validate it, and the results show that the model is accurate.

  • Subcarrier-Selectable Short Preamble for OFDM Channel Estimation in Real-Time Wireless Control Systems

    Theerat SAKDEJAYONT  Chun-Hao LIAO  Makoto SUZUKI  Hiroyuki MORIKAWA  

     
    PAPER-Communication Systems

      Vol:
    E100-A No:11
      Page(s):
    2323-2331

    Real-time and reliable radio communication is essential for wireless control systems (WCS). In WCS, preambles create significant overhead and affect the real-time capability since payloads are typically small. To shorten the preamble transmission time in OFDM systems, previous works have considered adopting either time-direction extrapolation (TDE) or frequency-direction interpolation (FDI) for channel estimation which however result in poor performance in fast fading channels and frequency-selective fading channels, respectively. In this work, we propose a subcarrier-selectable short preamble (SSSP) by introducing selectability to subcarrier sampling patterns of a preamble such that it can provide full sampling coverage of all subcarriers with several preamble transmissions. In addition, we introduce adaptability to a channel estimation algorithm for the SSSP so that it conforms to both fast and frequency-selective channels. Simulation results validate the feasibility of the proposed method in terms of the reliability and real-time capability. In particular, the SSSP scheme shows its advantage in flexibility as it can provide a low error rate and short communication time in various channel conditions.

61-78hit(78hit)