The search functionality is under construction.

Author Search Result

[Author] Kensuke SHIMIZU(12hit)

1-12hit
  • Detection of Autosymmetry in Logic Functions Using Spectrum Technique

    Ryoji ISHIKAWA  Goro KODA  Kensuke SHIMIZU  

     
    PAPER-Computer System Element

      Vol:
    E86-D No:12
      Page(s):
    2691-2697

    The discrete nature of data in a functional domain can generally be replaced by the global nature of data in the spectrum domain. In this paper we propose a fast procedure to detect autosymmetric function as an application of the spectrum technique. The autosymmetric function differs from the usual symmetric function and strongly relates with EXOR-based representations. It is known that many practical logical networks are autosymmetric, and this nature allows a useful functional class to realize a compact network with EXOR gates. Our procedure is able to detect autosymmetric functions quickly by using spectral coefficients. In experiments, our technique can detect the autosymmetry of most networks with a small number of checks of the spectrum.

  • Easily Testable Realization Based on Single-Rail-Input OR-AND-EXOR Expressions

    Takashi HIRAYAMA  Goro KODA  Yasuaki NISHITANI  Kensuke SHIMIZU  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E82-D No:9
      Page(s):
    1278-1286

    It is known that AND-EXOR two-level networks obtained by AND-EXOR expressions with positive literals are easily testable. They are based on the single-rail-input logic, and require (n+4) tests to detect their single stuck-at faults, where n is the number of the input variables. We present three-level networks obtained from single-rail-input OR-AND-EXOR expressions and propose a more easily testable realization than the AND-EXOR networks. The realization is an OR-AND-EXOR network which limits the fan-in of the AND and OR gates to n/r and r respectively, where r is a constant (1 r n). We show that only (r+n/r) tests are required to detect the single stuck-at faults by adding r extra variables to the network.

  • New Three-Level Boolean Expression Based on EXOR Gates

    Ryoji ISHIKAWA  Takashi HIRAYAMA  Goro KODA  Kensuke SHIMIZU  

     
    PAPER-Computer Components

      Vol:
    E87-D No:5
      Page(s):
    1214-1222

    The utilization of EXOR gates often decreases the number of gates needed for realizing practical logical networks, and enhances the testability of networks. Therefore, logic synthesis with EXOR gates has been studied. In this paper we propose a new logic representation: an ESPP (EXOR-Sum-of-Pseudoproducts) form based on pseudoproducts. This form provides a new three-level network with EXOR gates. Some functional classes in ESPP forms can be realized with shorter expressions than in conventional forms such as the Sum-of-Products. Since many practical functions have the properties of such classes, the ESPP form is useful for making a compact form. We propose a heuristic minimization algorithm for ESPP, and we demonstrate the compactness of ESPPs by showing our experimental results. We apply our technique to some logic function classes and MCNC benchmark networks. The experimental results show that most ESPP forms have fewer literals than conventional forms.

  • Minimization of AND-EXOR Expressions for Symmetric Functions

    Takashi HIRAYAMA  Yasuaki NISHITANI  Kensuke SHIMIZU  

     
    LETTER

      Vol:
    E80-A No:3
      Page(s):
    567-570

    This paper deals with minimization of ESOPs (exclusive-or sum-of-products) which represent symmetric functions. Se propose an efficient simplification algorithm for symmetric functions, which guarantees the minimality for some subclass of symmetric functions, and present the minimum ESOPs for all 6-variable symmetric functions.

  • Dynamic Range Compression Characteristics Using an Interpolating Polynomial for Digital Audio Systems

    Shugang WEI  Kensuke SHIMIZU  

     
    LETTER-Digital Signal Processing

      Vol:
    E88-A No:2
      Page(s):
    586-589

    An audio signal level compressor is presented, which is based on the approximation algorithm using an interpolating polynomial. To implement a compression characteristic in a digital audio system, a power calculation with fractional numbers is required and it is difficult to be performed directly in digital circuits. We introduce a polynomial expression to approximate the power operation, then the gain calculation is easily performed with a number of additions, multiplications and a division. Newton's interpolation formula is used to calculate the compression characteristics in a very short time and the obtained compression characteristics are very close to the ideal ones.

  • Compact Residue Arithmetic Multiplier Based on the Radix-4 Signed-Digit Multiple-Valued Arithmetic Circuits

    Shugang WEI  Kensuke SHIMIZU  

     
    PAPER-Non-Binary Architectures

      Vol:
    E82-C No:9
      Page(s):
    1647-1654

    A compact residue arithmetic multiplier based on the radix-4 signed-digit arithmetic is presented. Conventional residue arithmetic circuits have been designed using binary number arithmetic system, but the carry propagation arises which limits the speed of arithmetic operations in residue modules. In this paper, two radix-4 signed-digit (SD) number representations, {-2,-1,0,1,2} and {-3,-2,-1,0,1,2,3}, are introduced. The former is used for the input and output, and the later for the inner arithmetic circuit of the presented multiplier. Integers 4p and 4p 1 are used as moduli of residue number system (RNS), where p is a positive integer and both circuits for partial product generation and sum of the partial products can be efficiently constructed by using the multiple-valued current-mode circuits. The modulo m addition, m=4p or m=4p 1, can be performed by an SD adder or an end-around-carry SD adder with the multiple-valued circuits and the addition time is independent of the word length of operands. The modulo m multiplier can be compactly constructed using a binary tree of the multiple-valued modulo m SD adders, and consequently the modulo m multiplication is performed in O(log p) time. The number of MOS transistors required in the presented residue arithmetic multiplier is about 86p2 + 66p.

  • Synthesis of Multilevel Feed-Forward NAND Networks

    Kensuke SHIMIZU  Shugang WEI  

     
    LETTER-Computer System

      Vol:
    E69-E No:7
      Page(s):
    785-787

    A method for the synthesis of near optimal NAND networks is presented. At first, a given logical function is realized as a multilevel network with a minimum number of negative gates. Next this is transformed into a NAND network. Since procedures presented here do not require backtracking, they are quite efficient.

  • A Novel Residue Arithmetic Hardware Algorithm Using a Signed-Digit Number Representation

    Shugang WEI  Kensuke SHIMIZU  

     
    PAPER-Theory/Models of Computation

      Vol:
    E83-D No:12
      Page(s):
    2056-2064

    A novel residue arithmetic algorithm using radix-2 signed-digit (SD) number representation is presented. By this representation, memoryless residue arithmetic circuits using SD adders can be implemented. Conventional residue arithmetic circuits have been designed using binary number arithmetic system, but the carry propagation arises which limits the speed of arithmetic operations in residue modules. In this paper, a p-digit radix-2 SD number system is introduced to simplify the residue operation. For a modulus m, 2p-1 m 2p+2p-1-1, in a residue number system (RNS), the modulo m addition is performed by using two p-digit SD adders, one for the addition and one for the residue operation. Thus, the modulo m addition time is independent of the word length of operands. When m=2p or m= 2p 1, the modulo m addition is implemented by using only one SD adder. Moreover, a modulo m multiplier is constructed using a binary modulo m SD adder tree, and the modulo m multiplication can be performed in a time proportional to log 2 p. The VHDL implementation method for the presented algorithm is also discussed. The design and simulation results of some residue arithmetic circuits show that high speed residue arithmetic circuits can be obtained by the presented algorithms.

  • Modulo 2p-1 Arithmetic Hardware Algorithm Using Signed-Digit Number Representation

    Shugang WEI  Kensuke SHIMIZU  

     
    LETTER-Computer Hardware and Design

      Vol:
    E79-D No:3
      Page(s):
    242-246

    To realize high-speed computations in a residue number system (RNS), an implementation method for residue arithmetic circuits using signed-digit (SD) number representation is proposed. Integers mp = (2p-1) known as Mersenne numbers are used as moduli, so that modulo mp addition can be performed by an end-around-carry SD adder and the addition time is independent of the word length of operands. Using a binary modulo mp SD adder tree, the modulo mp multiplication can be performed in a time proportional to log2p.

  • Multilevel Network Design for Parity Functions with MOS Cells under Limitations on the Number of Series Transistors

    Yasuaki NISHITANI  Kensuke SHIMIZU  

     
    PAPER-Computer Hardware and Design

      Vol:
    E71-E No:8
      Page(s):
    791-798

    A design method of multilevel logic networks, in single-rail input logic, with MOS cells for parity functions of n variables is presented. The parity functions x1x2xn in a two level network requires 2n-1+1 gates, whereas the number of NOR gates in a multilevel network for this function is proportional to n. Since MOS cells are playing a major role in LSI and can represent more complex functions than a NOR or a NAND gate, it is possible to obtain smaller networks with complex MOS cells than with NOR or NAND gates. However, if MOS cells become excessively complex, the propagation delay time of MOS cells is too large and the normal operation of the whole MOS network cannot be expected. The design procedure given in this paper is systematic and very easy to apply. In the beginning, the formulation of MOS cells and MOS networks has been presented. In this formulation, the number of series and parallel transistors and the number of MOS cells and levels can be defined and enumerated for MOS networks. Without the restrictions the maximum number of series transistors is the number of input variables, n. With the estriction on the number of series transistors to R, the number of parallel transistors is less than or equal to 2R-1. Furthermore, the number of MOS cells and the number of levels of the MOS network are proportional to n and logRn, respectively. Since the designed network is similar to a complete tree, it would also be useful to process a series of combinations of input variable values.

  • Lower Bounds on Size of Periodic Functions in Exclusive-OR Sum-of-Products Expressions

    Yasuaki NISHITANI  Kensuke SHIMIZU  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E77-A No:3
      Page(s):
    475-482

    This paper deals with the size of switching functions in Exclusive-OR sum-of-products expressions (ESOPs). The size is the number of products in ESOP. There are no good algorithms to find an exact minimum ESOP. Since the exact minimization algorithms take a time in double exponential order, it is almost impossible to minimize ESOPs for an arbitrary n-variable functions with n5. Then,it is necessary to study the size of some concrete functions. These concrete functions are useful for testing heuristic minimization algorithms. In this paper we present the lower bounds on size of periodic functions in ESOPs. A symmetric function is said to be periodic when the vector of weights of inputs X such that f(X)1 is periodic. We show that the size of a 2t+1-periodic function with rank r is proportional to n2t+r, where t0 and 0r2t, i.e., in polynomial order,and thet the size of a (2s+1)2t-periodic function with s0 and t0 is greater than or equal to (3/2)n-(2s+1)2t, i.e., in exponential order. The concrete function the size of which is greater than or equal to 32(3/2)n-8 is presented. This function requires the largest size among the concrete functions the sizes of which are known. Some results for non-periodic symmetric functions are also given.

  • Plane-Wave Spectrum Analysis of Spherical Wave Absorption and Reflection by Metasurface Absorber

    Tu NGUYEN VAN  Satoshi YAGITANI  Kensuke SHIMIZU  Shinjiro NISHI  Mitsunori OZAKI  Tomohiko IMACHI  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1182-1191

    A metasurface absorber capable of monitoring two-dimensional (2-d) electric field distributions has been developed, where a matrix of lumped resistors between surface patches formed on a mushroom-type structure works as a 2-d array of short dipole sensors. In this paper absorption and reflection of a spherical wave incident on the metasurface absorber are analyzed by numerical computation by the plane-wave spectrum (PWS) technique using 2-d Fourier analysis. The electromagnetic field of the spherical wave incident on the absorber surface is expanded into a large number of plane waves, for each of which the TE and TM reflection and absorption coefficients are applied. Then by synthesizing all the plane wave fields we obtain the spatial distributions of reflected and absorbed fields. The detailed formulation of the computation is described, and the computed field distributions are compared with those obtained by simulation and actual measurement when the spherical wave from a dipole is illuminated onto a metasurface absorber. It is demonstrated that the PWS technique is effective and efficient in obtaining the accurate field distributions of the spherical wave on and around the absorber. This is useful for evaluating the performance of the metasurface absorber to absorb and measure the spherical wave field distributions around an EM source.