The search functionality is under construction.

Author Search Result

[Author] Yukio MITSUYAMA(11hit)

1-11hit
  • Trade-Off Analysis between Timing Error Rate and Power Dissipation for Adaptive Speed Control with Timing Error Prediction

    Hiroshi FUKETA  Masanori HASHIMOTO  Yukio MITSUYAMA  Takao ONOYE  

     
    PAPER-Logic Synthesis, Test and Verfication

      Vol:
    E92-A No:12
      Page(s):
    3094-3102

    Timing margin of a chip varies chip by chip due to manufacturing variability, and depends on operating environment and aging. Adaptive speed control with timing error prediction is promising to mitigate the timing margin variation, whereas it inherently has a critical risk of timing error occurrence when a circuit is slowed down. This paper presents how to evaluate the relation between timing error rate and power dissipation in self-adaptive circuits with timing error prediction. The discussion is experimentally validated using adders in subthreshold operation in a 90 nm CMOS process. We show a trade-off between timing error rate and power dissipation, and reveal the dependency of the trade-off on design parameters.

  • Measurement Circuits for Acquiring SET Pulse Width Distribution with Sub-FO1-Inverter-Delay Resolution

    Ryo HARADA  Yukio MITSUYAMA  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E93-A No:12
      Page(s):
    2417-2423

    This paper presents two circuits to measure pulse width distribution of single event transients (SETs). We first review requirements for SET measurement in accelerated neutron radiation test and point out problems of previous works, in terms of time resolution, time/area efficiency for obtaining large samples and certainty in absolute values of pulse width. We then devise two measurement circuits and a pulse generator circuit that satisfy all the requirements and attain sub-FO1-inverter-delay resolution, and propose a measurement procedure for assuring the absolute width values. Operation of one of the proposed circuits was confirmed by a radiation experiment of alpha particles with a fabricated test chip.

  • Field Slack Assessment for Predictive Fault Avoidance on Coarse-Grained Reconfigurable Devices

    Toshihiro KAMEDA  Hiroaki KONOURA  Dawood ALNAJJAR  Yukio MITSUYAMA  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER-Test and Verification

      Vol:
    E96-D No:8
      Page(s):
    1624-1631

    This paper proposes a procedure for avoiding delay faults in field with slack assessment during standby time. The proposed procedure performs path delay testing and checks if the slack is larger than a threshold value using selectable delay embedded in basic elements (BE). If the slack is smaller than the threshold, a pair of BEs to be replaced, which maximizes the path slack, is identified. Experimental results with two application circuits mapped on a coarse-grained architecture show that for aging-induced delay degradation a small threshold slack, which is less than 1 ps in a test case, is enough to ensure the delay fault prediction.

  • Reliability-Configurable Mixed-Grained Reconfigurable Array Supporting C-Based Design and Its Irradiation Testing

    Hiroaki KONOURA  Dawood ALNAJJAR  Yukio MITSUYAMA  Hajime SHIMADA  Kazutoshi KOBAYASHI  Hiroyuki KANBARA  Hiroyuki OCHI  Takashi IMAGAWA  Kazutoshi WAKABAYASHI  Masanori HASHIMOTO  Takao ONOYE  Hidetoshi ONODERA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E97-A No:12
      Page(s):
    2518-2529

    This paper proposes a mixed-grained reconfigurable architecture consisting of fine-grained and coarse-grained fabrics, each of which can be configured for different levels of reliability depending on the reliability requirement of target applications, e.g. mission-critical applications to consumer products. Thanks to the fine-grained fabrics, the architecture can accommodate a state machine, which is indispensable for exploiting C-based behavioral synthesis to trade latency with resource usage through multi-step processing using dynamic reconfiguration. In implementing the architecture, the strategy of dynamic reconfiguration, the assignment of configuration storage and the number of implementable states are key factors that determine the achievable trade-off between used silicon area and latency. We thus split the configuration bits into two classes; state-wise configuration bits and state-invariant configuration bits for minimizing area overhead of configuration bit storage. Through a case study, we experimentally explore the appropriate number of implementable states. A proof-of-concept VLSI chip was fabricated in 65nm process. Measurement results show that applications on the chip can be working in a harsh radiation environment. Irradiation tests also show the correlation between the number of sensitive bits and the mean time to failure. Furthermore, the temporal error rate of an example application due to soft errors in the datapath was measured and demonstrated for reliability-aware mapping.

  • SET Pulse-Width Measurement Suppressing Pulse-Width Modulation and Within-Die Process Variation Effects

    Ryo HARADA  Yukio MITSUYAMA  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER

      Vol:
    E97-A No:7
      Page(s):
    1461-1467

    This paper presents a measurement circuit structure for capturing SET pulse-width suppressing pulse-width modulation and within-die process variation effects. For mitigating pulse-width modulation while maintaining area efficiency, the proposed circuit uses massively parallelized short inverter chains as a target circuit. Moreover, for each inverter chain on each die, pulse-width calibration is performed. In measurements, narrow SET pulses ranging 5ps to 215ps were obtained. We confirm that an overestimation of pulse-width may happen when ignoring die-to-die and within-die variation of the measurement circuit. Our evaluation results thus point out that calibration for within-die variation in addition to die-to-die variation of the measurement circuit is indispensable.

  • Area-Efficient Reconfigurable Architecture for Media Processing

    Yukio MITSUYAMA  Kazuma TAKAHASHI  Rintaro IMAI  Masanori HASHIMOTO  Takao ONOYE  Isao SHIRAKAWA  

     
    PAPER-Embedded, Real-Time and Reconfigurable Systems

      Vol:
    E91-A No:12
      Page(s):
    3651-3662

    An area-efficient dynamically reconfigurable architecture is proposed, which is dedicated to media processing. To implement a compact but high performance device, which can be used in consumer applications, the reconfigurable architecture distinctively performs 8-bit operations required for media processing whereas fine-grained operations are executed with the cooperation of a host processor. A heterogeneous reconfigurable array is composed of four types of cells, for which configuration data size is reduced by focusing application domain on media processing. Implementation results show that a multi-standard video decoding can be achieved by the proposed reconfigurable architecture with 1.11.4 mm2 in a 90 nm CMOS technology.

  • Comparative Evaluation of Lifetime Enhancement with Fault Avoidance on Dynamically Reconfigurable Devices

    Hiroaki KONOURA  Takashi IMAGAWA  Yukio MITSUYAMA  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER

      Vol:
    E97-A No:7
      Page(s):
    1468-1482

    Fault tolerant methods using dynamically reconfigurable devices have been studied to overcome wear-out failures. However, quantitative comparisons have not been sufficiently assessed on device lifetime enhancement with these methods, whereas they have mainly been evaluated individually from various viewpoints such as additional hardware overheads, performance, and downtime for fault recovery. This paper presents quantitative lifetime evaluations performed by simulating the fault-avoidance procedures of five representative methods under the same conditions in wear-out scenarios, applications, and device architecture. The simulation results indicated that improvements of up to 70% mean-time-to-failure (MTTF) in comparison with ideal fault avoidance could be achieved by using methods of fault avoidance with ‘row direction shift’ and ‘dynamic partial reconfiguration’. ‘Column shift’, on the other hand, attained a high degree of stability with moderate improvements in MTTF. The experimental results also revealed that spare basic elements (BEs) should be prevented from aging so that improvements in MTTF would not be adversely affected. Moreover, we found that the selection of initial mappings guided by wire utilization could increase the lifetimes of partial reconfiguration based fault avoidance.

  • NBTI Mitigation Method by Inputting Random Scan-In Vectors in Standby Time

    Hiroaki KONOURA  Toshihiro KAMEDA  Yukio MITSUYAMA  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER

      Vol:
    E97-A No:7
      Page(s):
    1483-1491

    Negative Bias Temperature Instability (NBTI) is one of the serious concerns for long-term circuit performance degradation. NBTI degrades PMOS transistors under negative bias, whereas they recover once negative bias is removed. In this paper, we propose a mitigation method for NBTI-induced performance degradation that exploits the recovery property by shifting random input sequence through scan paths. With this method, we prevent consecutive stress that causes large degradation. Experimental results reveal that random scan-in vectors successfully mitigate NBTI and the path delay degradation is reduced by 71% in a test case when standby mode occupies 10% of total time. We also confirmed that 8-bit LFSR is capable of random number generation for this purpose with low area and power overhead.

  • Architecture of IEEE802.11i Cipher Algorithms for Embedded Systems

    Yukio MITSUYAMA  Motoki KIMURA  Takao ONOYE  Isao SHIRAKAWA  

     
    PAPER

      Vol:
    E88-A No:4
      Page(s):
    899-906

    VLSI architecture of IEEE802.11i cipher algorithms is devised dedicatedly for embedded implementation of IEEE802.11a/g wireless communication systems. The proposed architecture consists mainly of RC4 unit for WEP/TKIP and AES unit. The RC4 unit successfully adopts packed memory accessing architecture. As for the AES unit, overlapped pipeline scheme of CBC-MAC and Counter-Mode is exploited in order to conceal processing latency. The cipher core has been implemented with 18 Kgates in 0.18 µm CMOS technology, which achieves the maximum transmission rate of IEEE802.11a/g at 60 MHz clock frequency while consuming 14.5 mW of power.

  • Stress Probability Computation for Estimating NBTI-Induced Delay Degradation

    Hiroaki KONOURA  Yukio MITSUYAMA  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E94-A No:12
      Page(s):
    2545-2553

    PMOS stress (ON) probability has a strong impact on circuit timing degradation due to NBTI effect. This paper evaluates how the granularity of stress probability calculation affects NBTI prediction using a state-of-the-art long term prediction model. Experimental evaluations show that the stress probability should be estimated at transistor level to accurately predict the increase in delay, especially when the circuit operation and/or inputs are highly biased. We then devise and evaluate two annotation methods of stress probability to gate-level timing analysis; one guarantees the pessimism desirable for timing analysis and the other aims to obtain the result close to transistor-level timing analysis. Experimental results show that gate-level timing analysis with transistor-level stress probability calculation estimates the increase in delay with 12.6% error.

  • An Experimental Study on Body-Biasing Layout Style Focusing on Area Efficiency and Speed Controllability

    Koichi HAMAMOTO  Hiroshi FUKETA  Masanori HASHIMOTO  Yukio MITSUYAMA  Takao ONOYE  

     
    LETTER-Integrated Electronics

      Vol:
    E92-C No:2
      Page(s):
    281-285

    Body-biasing is expected to be a common design technique, and then area efficient implementation in layout has been demanded. Body-biasing outside standard cells is one of possible layouts. However in this case body-bias controllability, especially when forward bias is applied, is a concern. To investigate the controllability, we fabricated and measured a ring oscillator in a 90 nm technology. Our measurement result and evaluation of area efficiency reveal that body-biased circuits can be implemented with area overhead of less than 1% yet with sufficient speed controllability.