The search functionality is under construction.

Author Search Result

[Author] Zheng TAN(59hit)

1-20hit(59hit)

  • An Improved Clonal Selection Algorithm and Its Application to Traveling Salesman Problems

    Shangce GAO  Zheng TANG  Hongwei DAI  Jianchen ZHANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E90-A No:12
      Page(s):
    2930-2938

    The clonal selection algorithm (CS), inspired by the basic features of adaptive immune response to antigenic stimulus, can exploit and explore the solution space parallelly and effectively. However, antibody initialization and premature convergence are two problems of CS. To overcome these two problems, we propose a chaotic distance-based clonal selection algorithm (CDCS). In this novel algorithm, we introduce a chaotic initialization mechanism and a distance-based somatic hypermutation to improve the performance of CS. The proposed algorithm is also verified for numerous benchmark traveling salesman problems. Experimental results show that the improved algorithm proposed in this paper provides better performance when compared to other metaheuristics.

  • A Buffer-Based Switched-Capacitor Integrator with Reduced Capacitance Ratio

    Hiroki MATSUMOTO  Zheng TANG  Okihiko ISHIZUKA  

     
    LETTER-Electronic Circuit

      Vol:
    E73-E No:4
      Page(s):
    494-495

    A novel buffer-based switched-capacitor (SC) integrator integrable by a method of reducing capacitance ratio is presented. By this method, high Q sc filter can be made by realizable capacitance ratio on CMOS process. The proposed integrator can also be operated over wide frequency range because it uses a unity gain buffer (UGB).

  • Design and Implementations of a Learning T-Model Neural Network

    Zheng TANG  Okihiko ISHIZUKA  

     
    LETTER-Neural Networks

      Vol:
    E78-A No:2
      Page(s):
    259-263

    In this letter, we demonstrate an experimental CMOS neural circuit towards an understanding of how particular computations can be performed by a T-Model neural network. The architecture and a digital hardware implementation of the learning T-Model network are presented. Our experimental results show that the T-Model allows immense collective network computations and powerful learning.

  • On Collective Computational Properties of T-Model and Hopfield Neural Networks

    Okihiko ISHIZUKA  Zheng TANG  Akihiro TAKEI  Hiroki MATSUMOTO  

     
    PAPER-Neural Network Design

      Vol:
    E75-A No:6
      Page(s):
    663-669

    This paper extends an earlier study on the T-Model neural network to its collective computational properties. We present arguments that it is necessary to use the half-interconnected T-Model networks rather than the fully-interconnected Hopfield model networks. The T-Model has been generated in response to a number of observed weaknesses in the Hopfield model. This paper identities these problems and show how the T-Model overcomes them. The T-Model network is essentially a feedforward network which does not produce a local minimum for computations. A concept for understanding the dynamics of the T-Model neural circuit is presented and its performance is also compared with the Hopfield model. The T-Model neural circuit is implemented and tested with standard CMOS technology. Simulations and experiments show that the T-Model allows immense collective network computations and does not produce a local minimum. High densities comparable to that of the Hopfield model implementations have also been achieved.

  • New Word Detection Using BiLSTM+CRF Model with Features

    Jianyong DUAN  Zheng TAN  Mei ZHANG  Hao WANG  

     
    PAPER-Natural Language Processing

      Pubricized:
    2020/07/14
      Vol:
    E103-D No:10
      Page(s):
    2228-2236

    With the widespread popularity of a large number of social platforms, an increasing number of new words gradually appear. However, such new words have made some NLP tasks like word segmentation more challenging. Therefore, new word detection is always an important and tough task in NLP. This paper aims to extract new words using the BiLSTM+CRF model which added some features selected by us. These features include word length, part of speech (POS), contextual entropy and degree of word coagulation. Comparing to the traditional new word detection methods, our method can use both the features extracted by the model and the features we select to find new words. Experimental results demonstrate that our model can perform better compared to the benchmark models.

  • An Adaptive Fuzzy Network

    Zheng TANG  Okihiko ISHIZUKA  Hiroki MATSUMOTO  

     
    LETTER-Fuzzy Theory

      Vol:
    E75-A No:12
      Page(s):
    1826-1828

    An adaptive fuzzy network (AFN) is described that can be used to implement most of fuzzy logic functions. We introduce a learning algorithm largely borrowed from backpropagation algorithm and train the AFN system for several typical fuzzy problems. Simulations show that an adaptive fuzzy network can be implemented with the proposed network and algorithm, which would be impractical for a conventional fuzzy system.

  • A Method of Learning for Multi-Layer Networks

    Zheng TANG  Xu Gang WANG  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E85-A No:2
      Page(s):
    522-525

    A method of learning for multi-layer artificial neural networks is proposed. The learning model is designed to provide an effective means of escape from the Backpropagation local minima. The system is shown to escape from the Backpropagation local minima and be of much faster convergence than simulated annealing techniques by simulations on the exclusive-or problem and the Arabic numerals recognition problem.

  • An Artificial Immune System with Feedback Mechanisms for Effective Handling of Population Size

    Shangce GAO  Rong-Long WANG  Masahiro ISHII  Zheng TANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E93-A No:2
      Page(s):
    532-541

    This paper represents a feedback artificial immune system (FAIS). Inspired by the feedback mechanisms in the biological immune system, the proposed algorithm effectively manipulates the population size by increasing and decreasing B cells according to the diversity of the current population. Two kinds of assessments are used to evaluate the diversity aiming to capture the characteristics of the problem on hand. Furthermore, the processing of adding and declining the number of population is designed. The validity of the proposed algorithm is tested for several traveling salesman benchmark problems. Simulation results demonstrate the efficiency of the proposed algorithm when compared with the traditional genetic algorithm and an improved clonal selection algorithm.

  • An Artificial Immune System Architecture and Its Applications

    Wei-Dong SUN  Zheng TANG  Hiroki TAMURA  Masahiro ISHII  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E86-A No:7
      Page(s):
    1858-1868

    Immune system protects living body from an extraordinarily large variety of bacteria, viruses, and other pathogenic organisms. Based on immunological principles, new computational techniques are being developed, aiming not only at a better understanding of the system, but also at solving engineering problems. Our overall goal for this paper is twofold: to understand the real immune system from the information processing perspective, and to use idea generated from the immune system to construct new engineering application. As one example of the latter, we propose an artificial immune system architecture inspired by the human immune system and apply it to pattern recognition. We test the proposed architecture by the simulations on arbitrary sequences of analog input pattern classification and binary input pattern recognition. The simulation results illustrate that the proposed architecture is effective at clustering arbitrary sequences of analog input patterns into stable categories and it can produce stronger noise immunity than the binary network .

  • An Elastic Net Learning Algorithm for Edge Linking of Images

    Jiahai WANG  Zheng TANG  Qiping CAO  Xinshun XU  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E86-A No:11
      Page(s):
    2879-2886

    Edge linking is a fundamental computer vision task, yet presents difficulties arising from the lack of information in the image. Viewed as a constrained optimization problem, it is NP hard-being isomorphic to the classical Traveling Salesman Problem. This paper proposes a gradient ascent learning algorithm of the elastic net approach for edge linking of images. The learning algorithm has two phases: an elastic net phase, and a gradient ascent phase. The elastic net phase minimizes the path through the edge points. The procedure is equivalent to gradient descent of an energy function, and leads to a local minimum of energy that represents a good solution to the problem. Once the elastic net gets stuck in local minima, the gradient ascent phase attempts to fill up the valley by modifying parameters in a gradient ascent direction of the energy function. Thus, these two phases are repeated until the elastic net gets out of local minima and produces the shortest or better contour through edge points. We test the algorithm on a set of artificial images devised with the aim of demonstrating the sort of features that may occur in real images. For all problems, the systems are shown to be capable of escaping from the elastic net local minima and producing more meaningful contours than the original elastic net.

  • Multilayer Network Learning Algorithm Based on Pattern Search Method

    Xu-Gang WANG  Zheng TANG  Hiroki TAMURA  Masahiro ISHII  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E86-A No:7
      Page(s):
    1869-1875

    A new multilayer artificial neural network learning algorithm based on the pattern search method is proposed. The learning algorithm is designed to provide a very simple and effective means of searching the minima of an objective function directly without any knowledge of its derivatives. We test this algorithm on benchmark problems, such as exclusive-or (XOR), parity and alphabetic character learning problems. For all problems, the systems are shown to be trained efficiently by our algorithm. As a simple direct search algorithm, it can be applied to hardware implementations easily.

  • A Multiple-Valued Immune Network and Its Applications

    Zheng TANG  Takayuki YAMAGUCHI  Koichi TASHIMA  Okihiko ISHIZUKA  Koichi TANNO  

     
    PAPER-Neural Networks

      Vol:
    E82-A No:6
      Page(s):
    1102-1108

    This paper describes a new model of multiple-valued immune network based on biological immune response network. The model of multiple-valued immune network is formulated based on the analogy with the interaction between B cells and T cells in immune system. The model has a property that resembles immune response quite well. The immunity of the network is simulated and makes several experimentally testable predictions. Simulation results are given to a letter recognition application of the network and compared with binary ones. The simulations show that, beside the advantages of less categories, improved memory pattern and good memory capacity, the multiple-valued immune network produces a stronger noise immunity than binary one.

  • Neuron-MOS Current Mirror Circuit and Its Application to Multi-Valued Logic

    Jing SHEN  Koichi TANNO  Okihiko ISHIZUKA  Zheng TANG  

     
    PAPER-Circuits

      Vol:
    E82-D No:5
      Page(s):
    940-948

    A neuron-MOS transistor (νMOS) is applied to current-mode multi-valued logic (MVL) circuits. First, a novel low-voltage and low-power νMOS current mirror is presented. Then, a threshold detector and a quaternary T-gate using the proposed νMOS current mirrors are proposed. The minimum output voltage of the νMOS current mirror is decreased by VT (threshold voltage), compared with the conventional double cascode current mirror. The νMOS threshold detector is built on a νMOS current comparator originally composed of νMOS current mirrors. It has a high output swing and sharp transfer characteristics. The gradient of the proposed comparator output in the transfer region can be increased 6.3-fold compared with that in the conventional comparator. Along with improved operation of the novel current comparator, the discriminative ability of the proposed νMOS threshold detector is also increased. The performances of the proposed circuits are validated by HSPICE with Motorola 1.5 µm CMOS device parameters. Furthermore, the operation of a νMOS current mirror is also confirmed through experiments on test chips fabricated by VDEC*. The active area of the proposed νMOS current mirror is 63 µm 51 µm.

  • An Improved Local Search Learning Method for Multiple-Valued Logic Network Minimization with Bi-objectives

    Shangce GAO  Qiping CAO  Catherine VAIRAPPAN  Jianchen ZHANG  Zheng TANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E92-A No:2
      Page(s):
    594-603

    This paper describes an improved local search method for synthesizing arbitrary Multiple-Valued Logic (MVL) function. In our approach, the MVL function is mapped from its algebraic presentation (sum-of-products form) on a multiple-layered network based on the functional completeness property. The output of the network is evaluated based on two metrics of correctness and optimality. A local search embedded with chaotic dynamics is utilized to train the network in order to minimize the MVL functions. With the characteristics of pseudo-randomness, ergodicity and irregularity, both the search sequence and solution neighbourhood generated by chaotic variables enables the system to avoid local minimum settling and improves the solution quality. Simulation results based on 2-variable 4-valued MVL functions and some other large instances also show that the improved local search learning algorithm outperforms the traditional methods in terms of the correctness and the average number of product terms required to realize a given MVL function.

  • TongSACOM: A TongYiCiCiLin and Sequence Alignment-Based Ontology Mapping Model for Chinese Linked Open Data

    Ting WANG  Tiansheng XU  Zheng TANG  Yuki TODO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/03/15
      Vol:
    E100-D No:6
      Page(s):
    1251-1261

    Linked Open Data (LOD) at Schema-Level and knowledge described in Chinese is an important part of the LOD project. Previous work generally ignored the rules of word-order sensitivity and polysemy in Chinese or could not deal with the out-of-vocabulary (OOV) mapping task. There is still no efficient system for large-scale Chinese ontology mapping. In order to solve the problem, this study proposes a novel TongYiCiCiLin (TYCCL) and Sequence Alignment-based Chinese Ontology Mapping model, which is called TongSACOM, to evaluate Chinese concept similarity in LOD environment. Firstly, an improved TYCCL-based similarity algorithm is proposed to compute the similarity between atomic Chinese concepts that have been included in TYCCL. Secondly, a global sequence-alignment and improved TYCCL-based combined algorithm is proposed to evaluate the similarity between Chinese OOV. Finally, comparing the TongSACOM to other typical similarity computing algorithms, and the results prove that it has higher overall performance and usability. This study may have important practical significance for promoting Chinese knowledge sharing, reusing, interoperation and it can be widely applied in the related area of Chinese information processing.

  • A New Updating Procedure in the Hopfield-Type Network and Its Application to N-Queens Problem

    Rong-Long WANG  Zheng TANG  Qi-Ping CAO  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E85-A No:10
      Page(s):
    2368-2372

    When solving combinatorial optimization problems with a binary Hopfield-type neural network, the updating process in neural network is an important step in achieving a solution. In this letter, we propose a new updating procedure in binary Hopfield-type neural network for efficiently solving combinatorial optimization problems. In the new updating procedure, once the neuron is in excitatory state, then its input potential is in positive saturation where the input potential can only be reduced but cannot be increased, and once the neuron is in inhibitory state, then its input potential is in negative saturation where the input potential can only be increased but cannot be reduced. The new updating procedure is evaluated and compared with the original procedure and other improved methods through simulations based on N-Queens problem. The results show that the new updating procedure improves the searching capability of neural networks with shorter computation time. Particularly, the simulation results show that the performance of proposed method surpasses the exiting methods for N-queens problem in synchronous parallel computation model.

  • Multiple-Valued Static Random-Access-Memory Design and Application

    Zheng TANG  Okihiko ISHIZUKA  Hiroki MATSUMOTO  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    403-411

    In this paper, a general theory on multiple-valued static random-access-memory (RAM) is investigated. A criterion for a stable and an unstable modes is proved with a strict mathematical method and expressed with a diagrammatic representation. Based on the theory, an NMOS 6-transistor ternary and a quaternary static RAM (SRAM) cells are proposed and simulated with PSPICE. The detail circuit design and realization are analyzed. A 10-valued CMOS current-mode static RAM cell is also presented and fabricated with standard 5-µm CMOS technology. A family of multiple-valued flip-flops is presented and they show to have desirable properties for use in multiple-valued sequential circuits. Both PSPICE simulations and experiments indicate that the general theory presented are very useful and effective tools in the optimum design and circuit realization of multiple-valued static RAMs and flip-flops.

  • A Hopfield Network Learning Algorithm for Graph Planarization

    Zheng TANG  Rong Long WANG  Qi Ping CAO  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E84-A No:7
      Page(s):
    1799-1802

    A gradient ascent learning algorithm of the Hopfield neural networks for graph planarization is presented. This learning algorithm uses the Hopfield neural network to get a near-maximal planar subgraph, and increases the energy by modifying parameters in a gradient ascent direction to help the network escape from the state of the near-maximal planar subgraph to the state of the maximal planar subgraph or better one. The proposed algorithm is applied to several graphs up to 150 vertices and 1064 edges. The performance of our algorithm is compared with that of Takefuji/Lee's method. Simulation results show that the proposed algorithm is much better than Takefuji/Lee's method in terms of the solution quality for every tested graph.

  • A Novel Clonal Selection Algorithm and Its Application to Traveling Salesman Problem

    Shangce GAO  Hongwei DAI  Gang YANG  Zheng TANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E90-A No:10
      Page(s):
    2318-2325

    The Clonal Selection Algorithm (CSA) is employed by the natural immune system to define the basic features of an immune response to an antigenic stimulus. In the immune response, according to Burnet's clonal selection principle, the antigen imposes a selective pressure on the antibody population by allowing only those cells which specifically recognize the antigen to be selected for proliferation and differentiation. However ongoing investigations indicate that receptor editing, which refers to the process whereby antigen receptor engagement leads to a secondary somatic gene rearrangement event and alteration of the receptor specificity, is occasionally found in affinity maturation process. In this paper, we extend the traditional CSA approach by incorporating the receptor editing method, named RECSA, and applying it to the Traveling Salesman Problem. Thus, both somatic hypermutation (HM) of clonal selection theory and receptor editing (RE) are utilized to improve antibody affinity. Simulation results and comparisons with other general algorithms show that the RECSA algorithm can effectively enhance the searching efficiency and greatly improve the searching quality within reasonable number of generations.

  • A Multi-Layered Immune System for Graph Planarization Problem

    Shangce GAO  Rong-Long WANG  Hiroki TAMURA  Zheng TANG  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E92-D No:12
      Page(s):
    2498-2507

    This paper presents a new multi-layered artificial immune system architecture using the ideas generated from the biological immune system for solving combinatorial optimization problems. The proposed methodology is composed of five layers. After expressing the problem as a suitable representation in the first layer, the search space and the features of the problem are estimated and extracted in the second and third layers, respectively. Through taking advantage of the minimized search space from estimation and the heuristic information from extraction, the antibodies (or solutions) are evolved in the fourth layer and finally the fittest antibody is exported. In order to demonstrate the efficiency of the proposed system, the graph planarization problem is tested. Simulation results based on several benchmark instances show that the proposed algorithm performs better than traditional algorithms.

1-20hit(59hit)