The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

3781-3800hit(42807hit)

  • Shortening the Libert-Peters-Yung Revocable Group Signature Scheme by Using the Random Oracle Methodology

    Kazuma OHARA  Keita EMURA  Goichiro HANAOKA  Ai ISHIDA  Kazuo OHTA  Yusuke SAKAI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1101-1117

    At EUROCRYPT 2012, Libert, Peters and Yung (LPY) proposed the first scalable revocable group signature (R-GS) scheme in the standard model which achieves constant signing/verification costs and other costs regarding signers are at most logarithmic in N, where N is the maximum number of group members. However, although the LPY R-GS scheme is asymptotically quite efficient, this scheme is not sufficiently efficient in practice. For example, the signature size of the LPY scheme is roughly 10 times larger than that of an RSA signature (for 160-bit security). In this paper, we propose a compact R-GS scheme secure in the random oracle model that is efficient not only in the asymptotic sense but also in practical parameter settings. We achieve the same efficiency as the LPY scheme in an asymptotic sense, and the signature size is nearly equal to that of an RSA signature (for 160-bit security). It is particularly worth noting that our R-GS scheme has the smallest signature size compared to those of previous R-GS schemes which enable constant signing/verification costs. Our technique, which we call parallel Boneh-Boyen-Shacham group signature technique, helps to construct an R-GS scheme without following the technique used in LPY, i.e., we directly apply the Naor-Naor-Lotspiech framework without using any identity-based encryption.

  • A Novel Nonhomogeneous Detector Based on Over-Determined Linear Equations with Single Snapshot

    Di YAO  Xin ZHANG  Qiang YANG  Weibo DENG  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:9
      Page(s):
    1312-1316

    To solve the problem of nonhomogeneous clutter suppression for moving target detection in High Frequency Surface Wave Radar (HFSWR), a novel nonhomogeneous clutter detector (NHD) is present in this paper. This novel NHD makes an analysis for the clutter constituents with single snapshot based on the over-determined linear equations in space-time adaptive processing (STAP) and distinguish the nonhomogeneous secondary data from the whole secondary data set through calculating the correlation coefficients of the secondary data.

  • A Packet Classification Method via Cascaded Circular-Run-Based Trie

    Takashi HARADA  Yuki ISHIKAWA  Ken TANAKA  Kenji MIKAWA  

     
    PAPER-Classification

      Vol:
    E102-A No:9
      Page(s):
    1171-1178

    The packet classification problem to determine the behavior of incoming packets at the network devices. The processing latency of packet classification by linear search is proportional to the number of classification rules. To limit the latency caused by classification to a certain level, we should develop a classification algorithm that classifies packets in a time independent of the number of classification rules. Arbitrary (including noncontiguous) bitmask rules are efficiently expressive for controlling higher layer communication, achiving access control lists, Quality of Service and so on. In this paper, we propose a classification algorithm based on run-based trie [1] according to arbitrary bitmask rules. The space complexity of proposed algorithm is in linear in the size of a rule list. The time complexity except for construction of that can be regarded as constant which is independent the number of rules. Experimental results using a packet classification algorithm benchmark [2] show that our method classifies packets in constant time independent of the number of rules.

  • Upcoming Mood Prediction Using Public Online Social Networks Data: Analysis over Cyber-Social-Physical Dimension

    Chaima DHAHRI  Kazunori MATSUMOTO  Keiichiro HOASHI  

     
    PAPER-Emotional Information Processing

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:9
      Page(s):
    1625-1634

    Upcoming mood prediction plays an important role in different topics such as bipolar depression disorder in psychology and quality-of-life and recommendations on health-related quality of life research. The mood in this study is defined as the general emotional state of a user. In contrast to emotions which is more specific and varying within a day, the mood is described as having either a positive or negative valence[1]. We propose an autonomous system that predicts the upcoming user mood based on their online activities over cyber, social and physical spaces without using extra-devices and sensors. Recently, many researchers have relied on online social networks (OSNs) to detect user mood. However, all the existing works focused on inferring the current mood and only few works have focused on predicting the upcoming mood. For this reason, we define a new goal of predicting the upcoming mood. We, first, collected ground truth data during two months from 383 subjects. Then, we studied the correlation between extracted features and user's mood. Finally, we used these features to train two predictive systems: generalized and personalized. The results suggest a statistically significant correlation between tomorrow's mood and today's activities on OSNs, which can be used to develop a decent predictive system with an average accuracy of 70% and a recall of 75% for the correlated users. This performance was increased to an average accuracy of 79% and a recall of 80% for active users who have more than 30 days of history data. Moreover, we showed that, for non-active users, referring to a generalized system can be a solution to compensate the lack of data at the early stage of the system, but when enough data for each user is available, a personalized system is used to individually predict the upcoming mood.

  • Effects of Software Modifications and Development After an Organizational Change on Software Metrics Value Open Access

    Ryo ISHIZUKA  Naohiko TSUDA  Hironori WASHIZAKI  Yoshiaki FUKAZAWA  Shunsuke SUGIMURA  Yuichiro YASUDA  

     
    LETTER-Software Quality Management

      Pubricized:
    2019/06/13
      Vol:
    E102-D No:9
      Page(s):
    1693-1695

    Deterioration of software quality developed by multiple organizations has become a serious problem. To predict software degradation after an organizational change, this paper investigates the influence of quality deterioration on software metrics by analyzing three software projects. To detect factors indicating a low evolvability, we focus on the relationships between the change in software metric values and refactoring tendencies. Refactoring after an organization change impacts the quality.

  • A Fully-Connected Ising Model Embedding Method and Its Evaluation for CMOS Annealing Machines

    Daisuke OKU  Kotaro TERADA  Masato HAYASHI  Masanao YAMAOKA  Shu TANAKA  Nozomu TOGAWA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/06/10
      Vol:
    E102-D No:9
      Page(s):
    1696-1706

    Combinatorial optimization problems with a large solution space are difficult to solve just using von Neumann computers. Ising machines or annealing machines have been developed to tackle these problems as a promising Non-von Neumann computer. In order to use these annealing machines, every combinatorial optimization problem is mapped onto the physical Ising model, which consists of spins, interactions between them, and their external magnetic fields. Then the annealing machines operate so as to search the ground state of the physical Ising model, which corresponds to the optimal solution of the original combinatorial optimization problem. A combinatorial optimization problem can be firstly described by an ideal fully-connected Ising model but it is very hard to embed it onto the physical Ising model topology of a particular annealing machine, which causes one of the largest issues in annealing machines. In this paper, we propose a fully-connected Ising model embedding method targeting for CMOS annealing machine. The key idea is that the proposed method replicates every logical spin in a fully-connected Ising model and embeds each logical spin onto the physical spins with the same chain length. Experimental results through an actual combinatorial problem show that the proposed method obtains spin embeddings superior to the conventional de facto standard method, in terms of the embedding time and the probability of obtaining a feasible solution.

  • Data-Driven Decision-Making in Cyber-Physical Integrated Society

    Noboru SONEHARA  Takahisa SUZUKI  Akihisa KODATE  Toshihiko WAKAHARA  Yoshinori SAKAI  Yu ICHIFUJI  Hideo FUJII  Hideki YOSHII  

     
    INVITED PAPER

      Pubricized:
    2019/07/04
      Vol:
    E102-D No:9
      Page(s):
    1607-1616

    The Cyber-Physical Integrated Society (CPIS) is being formed with the fusion of cyber-space and the real-world. In this paper, we will discuss Data-Driven Decision-Making (DDDM) support systems to solve social problems in the CPIS. First, we introduce a Web of Resources (WoR) that uses Web booking log data for destination data management. Next, we introduce an Internet of Persons (IoP) system to visualize individual and group flows of people by analyzing collected Wi-Fi usage log data. Specifically, we present examples of how WoR and IoP visualize flows of groups of people that can be shared across different industries, including telecommunications carriers and railway operators, and policy decision support for local, short-term events. Finally, the importance of data-driven training of human resources to support DDDM in the future CPIS is discussed.

  • Cross-VM Cache Timing Attacks on Virtualized Network Functions

    Youngjoo SHIN  

     
    LETTER-Information Network

      Pubricized:
    2019/05/27
      Vol:
    E102-D No:9
      Page(s):
    1874-1877

    Network function virtualization (NFV) achieves the flexibility of network service provisioning by using virtualization technology. However, NFV is exposed to a serious security threat known as cross-VM cache timing attacks. In this letter, we look into real security impacts on network virtualization. Specifically, we present two kinds of practical cache timing attacks on virtualized firewalls and routers. We also propose some countermeasures to mitigate such attacks on virtualized network functions.

  • Latent Variable Based Anomaly Detection in Network System Logs

    Kazuki OTOMO  Satoru KOBAYASHI  Kensuke FUKUDA  Hiroshi ESAKI  

     
    PAPER-Network Operation Support

      Pubricized:
    2019/06/07
      Vol:
    E102-D No:9
      Page(s):
    1644-1652

    System logs are useful to understand the status of and detect faults in large scale networks. However, due to their diversity and volume of these logs, log analysis requires much time and effort. In this paper, we propose a log event anomaly detection method for large-scale networks without pre-processing and feature extraction. The key idea is to embed a large amount of diverse data into hidden states by using latent variables. We evaluate our method with 12 months of system logs obtained from a nation-wide academic network in Japan. Through comparisons with Kleinberg's univariate burst detection and a traditional multivariate analysis (i.e., PCA), we demonstrate that our proposed method achieves 14.5% higher recall and 3% higher precision than PCA. A case study shows detected anomalies are effective information for troubleshooting of network system faults.

  • A Method for Smartphone Theft Prevention When the Owner Dozes Off Open Access

    Kouhei NAGATA  Yoshiaki SEKI  

     
    LETTER-Physical Security

      Pubricized:
    2019/06/04
      Vol:
    E102-D No:9
      Page(s):
    1686-1688

    We propose a method for preventing smartphone theft when the owner dozes off. The owner of the smartphone wears a wristwatch type device that has an acceleration sensor and a vibration mode. This device detects when the owner dozes off. When the acceleration sensor in the smartphone detects an accident while dozing, the device vibrates. We implemented this function and tested its usefulness.

  • Gradual Switch Clustering Based Virtual Middlebox Placement for Improving Service Chain Performance Open Access

    Duc-Tiep VU  Kyungbaek KIM  

     
    LETTER-Information Network

      Pubricized:
    2019/06/05
      Vol:
    E102-D No:9
      Page(s):
    1878-1881

    Recently, Network Function Virtualization (NFV) has drawn attentions of many network researchers with great deal of flexibilities, and various network service chains can be used in an SDN/NFV environment. With the flexibility of virtual middlebox placement, how to place virtual middleboxes in order to optimize the performance of service chains becomes essential. Some past studies focused on placement problem of consolidated middleboxes which combine multiple functions into a virtual middlebox. However, when a virtual middlebox providing only a single function is considered, the placement problem becomes much more complex. In this paper, we propose a new heuristic method, the gradual switch clustering based virtual middlebox placement method, in order to improve the performance of service chains, with the constraints of end-to-end delay, bandwidth, and operation cost of deploying a virtual middlebox on a switch. The proposed method gradually finds candidate places for each type of virtual middlebox along with the sequential order of service chains, by clustering candidate switches which satisfy the constraints. Finally, among candidate places for each type of virtual middlebox, the best places are selected in order to minimize the end-to-end delays of service chains. The evaluation results, which are obtained through Mininet based extensive emulations, show that the proposed method outperforms than other methods, and specifically it achieves around 25% less end-to-end delay than other methods.

  • Marked Temporal Point Processes for Trip Demand Prediction in Bike Sharing Systems

    Maya OKAWA  Yusuke TANAKA  Takeshi KURASHIMA  Hiroyuki TODA  Tomohiro YAMADA  

     
    PAPER-Business Support

      Pubricized:
    2019/06/17
      Vol:
    E102-D No:9
      Page(s):
    1635-1643

    With the acceptance of social sharing, public bike sharing services have become popular worldwide. One of the most important tasks in operating a bike sharing system is managing the bike supply at each station to avoid either running out of bicycles or docks to park them. This requires the system operator to redistribute bicycles from overcrowded stations to under-supplied ones. Trip demand prediction plays a crucial role in improving redistribution strategies. Predicting trip demand is a highly challenging problem because it is influenced by multiple levels of factors, both environmental and individual, e.g., weather and user characteristics. Although several existing studies successfully address either of them in isolation, no framework exists that can consider all factors simultaneously. This paper starts by analyzing trip data from real-world bike-sharing systems. The analysis reveals the interplay of the multiple levels of the factors. Based on the analysis results, we develop a novel form of the point process; it jointly incorporates multiple levels of factors to predict trip demand, i.e., predicting the pick-up and drop-off levels in the future and when over-demand is likely to occur. Our extensive experiments on real-world bike sharing systems demonstrate the superiority of our trip demand prediction method over five existing methods.

  • Priority Broadcast Modeling of IEEE 802.11p MAC with Channel Switching Operation

    Daein JEONG  

     
    PAPER-Network

      Pubricized:
    2019/03/05
      Vol:
    E102-B No:9
      Page(s):
    1895-1903

    In this paper, we propose multidimensional stochastic modeling of priority broadcast in Vehicular Ad hoc Networks (VANET). We focus on the channel switching operation of IEEE 1609.4 in systems that handle different types of safety messages, such as event-driven urgent messages and periodic beacon messages. The model considers the constraints imposed by the channel switching operation. The model also reflects differentiated services that handle different types of messages. We carefully consider the delivery time limit and the number of transmissions of the urgent messages. We also consider the hidden node problem, which has an increased impact on broadcast communications. We use the model in analyzing the relationship between system variables and performance metrics of each message type. The analysis results include confirming that the differentiated services work effectively in providing class specific quality of services under moderate traffic loads, and that the repeated transmission of urgent message is a meaningful countermeasure against the hidden node problem. It is also confirmed that the delivery time limit of urgent message is a crucial factor in tuning the channel switching operation.

  • Vision Based Nighttime Vehicle Detection Using Adaptive Threshold and Multi-Class Classification

    Yuta SAKAGAWA  Kosuke NAKAJIMA  Gosuke OHASHI  

     
    PAPER

      Vol:
    E102-A No:9
      Page(s):
    1235-1245

    We propose a method that detects vehicles from in-vehicle monocular camera images captured during nighttime driving. Detecting vehicles from their shape is difficult at night; however, many vehicle detection methods focusing on light have been proposed. We detect bright spots by appropriate binarization based on the characteristics of vehicle lights such as brightness and color. Also, as the detected bright spots include lights other than vehicles, we need to distinguish the vehicle lights from other bright spots. Therefore, the bright spots were distinguished using Random Forest, a multiclass classification machine-learning algorithm. The features of bright spots not associated with vehicles were effectively utilized in the vehicle detection in our proposed method. More precisely vehicle detection is performed by giving weights to the results of the Random Forest based on the features of vehicle bright spots and the features of bright spots not related to the vehicle. Our proposed method was applied to nighttime images and confirmed effectiveness.

  • TFIDF-FL: Localizing Faults Using Term Frequency-Inverse Document Frequency and Deep Learning

    Zhuo ZHANG  Yan LEI  Jianjun XU  Xiaoguang MAO  Xi CHANG  

     
    LETTER-Software Engineering

      Pubricized:
    2019/05/27
      Vol:
    E102-D No:9
      Page(s):
    1860-1864

    Existing fault localization based on neural networks utilize the information of whether a statement is executed or not executed to identify suspicious statements potentially responsible for a failure. However, the information just shows the binary execution states of a statement, and cannot show how important a statement is in executions. Consequently, it may degrade fault localization effectiveness. To address this issue, this paper proposes TFIDF-FL by using term frequency-inverse document frequency to identify a high or low degree of the influence of a statement in an execution. Our empirical results on 8 real-world programs show that TFIDF-FL significantly improves fault localization effectiveness.

  • Geometric Dilution of Precision for Received Signal Strength in the Wireless Sensor Networks Open Access

    Wanchun LI  Yifan WEI  Ping WEI  Hengming TAI  Xiaoyan PENG  Hongshu LIAO  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E102-A No:9
      Page(s):
    1330-1332

    Geometric dilution of precision (GDOP) is a measure showing the positioning accuracy at different spatial locations in location systems. Although expressions of GDOP for the time of arrival (TOA), time difference of arrival (TDOA), and angle of arrival (AOA) systems have been developed, no closed form expression of GDOP are available for the received signal strength (RSS) system. This letter derives an explicit GDOP expression utilizing the RSS measurement in the wireless sensor networks.

  • On the Competitive Analysis for the Multi-Objective Time Series Search Problem

    Toshiya ITOH  Yoshinori TAKEI  

     
    PAPER-Optimization

      Vol:
    E102-A No:9
      Page(s):
    1150-1158

    For the multi-objective time series search problem, Hasegawa and Itoh [Theoretical Computer Science, Vol.78, pp.58-66, 2018] presented the best possible online algorithm balanced price policy for any monotone function f:Rk→R. Specifically the competitive ratio with respect to the monotone function f(c1,...,ck)=(c1+…+ck)/k is referred to as the arithmetic mean component competitive ratio. Hasegawa and Itoh derived the explicit representation of the arithmetic mean component competitive ratio for k=2, but it has not been known for any integer k≥3. In this paper, we derive the explicit representations of the arithmetic mean component competitive ratio for k=3 and k=4, respectively. On the other hand, we show that it is computationally difficult to derive the explicit representation of the arithmetic mean component competitive ratio for arbitrary integer k in a way similar to the cases for k=2, 3, and 4.

  • Efficient Approximate 3-Dimensional Point Set Matching Using Root-Mean-Square Deviation Score

    Yoichi SASAKI  Tetsuo SHIBUYA  Kimihito ITO  Hiroki ARIMURA  

     
    PAPER-Optimization

      Vol:
    E102-A No:9
      Page(s):
    1159-1170

    In this paper, we study the approximate point set matching (APSM) problem with minimum RMSD score under translation, rotation, and one-to-one correspondence in d-dimension. Since most of the previous works about APSM problems use similality scores that do not especially care about one-to-one correspondence between points, such as Hausdorff distance, we cannot easily apply previously proposed methods to our APSM problem. So, we focus on speed-up of exhaustive search algorithms that can find all approximate matches. First, we present an efficient branch-and-bound algorithm using a novel lower bound function of the minimum RMSD score for the enumeration version of APSM problem. Then, we modify this algorithm for the optimization version. Next, we present another algorithm that runs fast with high probability when a set of parameters are fixed. Experimental results on both synthetic datasets and real 3-D molecular datasets showed that our branch-and-bound algorithm achieved significant speed-up over the naive algorithm still keeping the advantage of generating all answers.

  • Enumerating Highly-Edge-Connected Spanning Subgraphs

    Katsuhisa YAMANAKA  Yasuko MATSUI  Shin-ichi NAKANO  

     
    PAPER-Graph algorithms

      Vol:
    E102-A No:9
      Page(s):
    1002-1006

    In this paper, we consider the problem of enumerating spanning subgraphs with high edge-connectivity of an input graph. Such subgraphs ensure multiple routes between two vertices. We first present an algorithm that enumerates all the 2-edge-connected spanning subgraphs of a given plane graph with n vertices. The algorithm generates each 2-edge-connected spanning subgraph of the input graph in O(n) time. We next present an algorithm that enumerates all the k-edge-connected spanning subgraphs of a given general graph with m edges. The algorithm generates each k-edge-connected spanning subgraph of the input graph in O(mT) time, where T is the running time to check the k-edge-connectivity of a graph.

  • Revisiting the Top-Down Computation of BDD of Spanning Trees of a Graph and Its Tutte Polynomial Open Access

    Farley Soares OLIVEIRA  Hidefumi HIRAISHI  Hiroshi IMAI  

     
    PAPER-Graph algorithms

      Vol:
    E102-A No:9
      Page(s):
    1022-1027

    Revisiting the Sekine-Imai-Tani top-down algorithm to compute the BDD of all spanning trees and the Tutte polynomial of a given graph, we explicitly analyze the Fixed-Parameter Tractable (FPT) time complexity with respect to its (proper) pathwidth, pw (ppw), and obtain a bound of O*(Bellmin{pw}+1,ppw}), where Belln denotes the n-th Bell number, defined as the number of partitions of a set of n elements. We further investigate the case of complete graphs in terms of Bell numbers and related combinatorics, obtaining a time complexity bound of Belln-O(n/log n).

3781-3800hit(42807hit)