The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

3821-3840hit(42807hit)

  • Pyramid Predictive Attention Network for Medical Image Segmentation Open Access

    Tingxiao YANG  Yuichiro YOSHIMURA  Akira MORITA  Takao NAMIKI  Toshiya NAKAGUCHI  

     
    PAPER

      Vol:
    E102-A No:9
      Page(s):
    1225-1234

    In this paper, we propose a Pyramid Predictive Attention Network (PPAN) for medical image segmentation. In the medical field, the size of dataset generally restricts the performance of deep CNN and deploying the trained network with gross parameters into the terminal device with limited memory is an expectation. Our team aims to the future home medical diagnosis and search for lightweight medical image segmentation network. Therefore, we designed PPAN mainly made of Xception blocks which are modified from DeepLab v3+ and consist of separable depthwise convolutions to speed up the computation and reduce the parameters. Meanwhile, by utilizing pyramid predictions from each dimension stage will guide the network more accessible to optimize the training process towards the final segmentation target without degrading the performance. IoU metric is used for the evaluation on the test dataset. We compared our designed network performance with the current state of the art segmentation networks on our RGB tongue dataset which was captured by the developed TIAS system for tongue diagnosis. Our designed network reduced 80 percentage parameters compared to the most widely used U-Net in medical image segmentation and achieved similar or better performance. Any terminal with limited storage which is needed a segment of RGB image can refer to our designed PPAN.

  • Improved Integral Attack on HIGHT

    Yuki FUNABIKI  Yosuke TODO  Takanori ISOBE  Masakatu MORII  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1259-1271

    HIGHT is a 64-bit block lightweight cipher, which adopts the ARX-based generalized Feistel network, and it accepts a 128-bit key. It is a standard encryption algorithm in South Korea and also is internationally standardized by ISO/IEC 18033-3. Therefore, many third-party cryptanalyses have been proposed against HIGHT. Impossible differential and integral attacks are applied to reduced-round HIGHT, and especially, the impossible differential attack causes the 27-round attack, which is the current best attack under the single-key setting. In this paper, we propose some improved integral attacks against HIGHT. We first apply the division property to HIGHT and find new 19-round integral characteristics, which are improved by two rounds compared with the previous best ones. We append 9-round key recovery to these characteristics and it enables us to attack 28-round HIGHT. Its time complexity is 2127.02 where 263 chosen plaintexts and 2117 memory are required. Moreover, we can attack 29-round HIGHT if the full codebook is used, where its time and memory complexities are 2126.07 and 2118, respectively. It improves by two rounds compared with the previous best attack.

  • A Fast Packet Loss Detection Mechanism for Content-Centric Networking

    Ryo NAKAMURA  Hiroyuki OHSAKI  

     
    PAPER

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1842-1852

    In this paper, we propose a packet loss detection mechanism called Interest ACKnowledgement (ACK). Interest ACK provides information on the history of successful Interest packet receptions at a repository (i.e., content provider); this information is conveyed to the corresponding entity (i.e., content consumer) via the header of Data packets. Interest ACKs enable the entity to quickly and accurately detect Interest and Data packet losses in the network. We conduct simulations to investigate the effectiveness of Interest ACKs under several scenarios. Our results show that Interest ACKs are effective for improving the adaptability and stability of CCN with window-based flow control and that packet losses at the repository can be reduced by 10%-20%. Moreover, by extending Interest ACK, we propose a lossy link detection mechanism called LLD-IA (Lossy Link Detection with Interest ACKs), which is a mechanism for an entity to estimate the link where the packet was discarded in a network. Also, we show that LLD-IA can effectively detect links where packets were discarded under moderate packet loss ratios through simulation.

  • Exploiting Packet-Level Parallelism of Packet Parsing for FPGA-Based Switches

    Junnan LI  Biao HAN  Zhigang SUN  Tao LI  Xiaoyan WANG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2019/03/18
      Vol:
    E102-B No:9
      Page(s):
    1862-1874

    FPGA-based switches are appealing nowadays due to the balance between hardware performance and software flexibility. Packet parser, as the foundational component of FPGA-based switches, is to identify and extract specific fields used in forwarding decisions, e.g., destination IP address. However, traditional parsers are too rigid to accommodate new protocols. In addition, FPGAs usually have a much lower clock frequency and fewer hardware resources, compared to ASICs. In this paper, we present PLANET, a programmable packet-level parallel parsing architecture for FPGA-based switches, to overcome these two limitations. First, PLANET has flexible programmability of updating parsing algorithms at run-time. Second, PLANET highly exploits parallelism inside packet parsing to compensate FPGA's low clock frequency and reduces resource consumption with one-block recycling design. We implemented PLANET on an FPGA-based switch prototype with well-integrated datacenter protocols. Evaluation results show that our design can parse packets at up to 100 Gbps, as well as maintain a relative low parsing latency and fewer hardware resources than existing proposals.

  • STBC Based Decoders for Two-User Interference MIMO Channels

    Zhiqiang YI  Meilin HE  Peng PAN  Haiquan WANG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2019/03/14
      Vol:
    E102-B No:9
      Page(s):
    1875-1884

    This paper analyzes the performance of various decoders in a two-user interference channel, and some improved decoders based on enhanced utilization of channel state information at the receiver side are presented. Further, new decoders, namely hierarchical constellation based decoders, are proposed. Simulations show that the improved decoders and the proposed decoders have much better performance than existing decoders. Moreover, the proposed decoders have lower decoding complexity than the traditional maximum likelihood decoder.

  • Suzaku: A Churn Resilient and Lookup-Efficient Key-Order Preserving Structured Overlay Network

    Kota ABE  Yuuichi TERANISHI  

     
    PAPER-Network

      Pubricized:
    2019/03/05
      Vol:
    E102-B No:9
      Page(s):
    1885-1894

    A key-order preserving structured overlay network is a class of structured overlay network that preserves, in its structure, the order of keys to support efficient range queries. This paper presents a novel key-order preserving structured overlay network “Suzaku”. Similar to the conventional Chord#, Suzaku uses a periodically updated finger table as a routing table, but extends its uni-directional finger table to bi-directional, which achieves ⌈log2 n⌉-1 maximum lookup hops in the converged state. Suzaku introduces active and passive bi-directional finger table update algorithms for node insertion and deletion. This method maintains good lookup performance (lookup hops increase nearly logarithmically against n) even in churn situations. As well as its good performance, the algorithms of Suzaku are simple and easy to implement. This paper describes the principles of Suzaku, followed by simulation evaluations, in which it showed better performance than the conventional networks, Chord# and Skip Graph.

  • Enhancing Multipath TCP Initialization with SYN Duplication

    Kien NGUYEN  Mirza Golam KIBRIA  Kentaro ISHIZU  Fumihide KOJIMA  

     
    PAPER-Network

      Pubricized:
    2019/03/18
      Vol:
    E102-B No:9
      Page(s):
    1904-1913

    A Multipath TCP (MPTCP) connection uses multiple subflows (i.e., TCP flows), each of which traverses over a wireless link, enabling throughput and resilience enhancements in mobile wireless networks. However, to achieve the benefits, the subflows are necessarily initialized (i.e., must complete TCP handshakes) and sequentially attached to the MPTCP connection. In the standard (MPTCPST), MPTCP initialization raises several problems. First, the TCP handshake of opening subflow is generally associated with a predetermined network. That leads to degraded MPTCP performance when the network does not have the lowest latency among available ones. Second, the first subflow's initialization needs to be successful before the next subflow can commence its attempt to achieve initialization. Therefore, the resilience of multiple paths fails when the first initialization fails. This paper proposes a novel method for MPTCP initialization, namely MPTCPSD (i.e., MPTCP with SYN duplication), which can solve the problems. MPTCPSD duplicates the first SYN and attempts to establish TCP handshakes for all subflows simultaneously, hence inherently improves the loss-resiliency. The subflow that achieves initialization first, is selected as the first subflow, consequently solving the first problem. We have implemented and extensively evaluated MPTCPSD in comparison to MPTCPST. In an emulated network, the evaluation results show that MPTCPSD has better performance that MPTCPST with the scenarios of medium and short flows. Moreover, MPTCPSD outperforms MPTCPST in the case that the opening subflow fails. Moreover, a real network evaluation proves that MPTCPSD efficiently selects the lowest delay network among three ones for the first subflow regardless of the preconfigured default network. Additionally, we propose and implement a security feature for MPTCPSD, that prevents the malicious subflow from being established by a third party.

  • A Generalized Data Uploading Scheme for D2D-Enhanced Cellular Networks

    Xiaolan LIU  Lisheng MA  Xiaohong JIANG  

     
    PAPER-Network

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1914-1923

    This paper investigates data uploading in cellular networks with the consideration of device-to-device (D2D) communications. A generalized data uploading scheme is proposed by leveraging D2D cooperation among the devices to reduce the data uploading time. In this scheme, we extend the conventional schemes on cooperative D2D data uploading for cellular networks to a more general case, which considers D2D cooperation among both the devices with or without uploading data. To motivate D2D cooperation among all available devices, we organize the devices within communication range by offering them rewards to construct multi-hop D2D chains for data uploading. Specifically, we formulate the problem of chain formation among the devices for data uploading as a coalitional game. Based on merge-and-split rules, we develop a coalition formation algorithm to obtain the solution for the formulated coalitional game with convergence on a stable coalitional structure. Finally, extensive numerical results show the effectiveness of our proposed scheme in reducing the average data uploading time.

  • Fundamental Study on the Effects of Connector Torque Value on the Change of Inductance at the Contact Boundary

    Daisuke FUJIMOTO  Takashi NARIMATSU  Yu-ichi HAYASHI  

     
    PAPER

      Vol:
    E102-C No:9
      Page(s):
    636-640

    Under the condition of inadequate torque management, contact failure could occur in the interconnecting connector. Contact failure reduces the local immunity and degrades the electromagnetic properties of the equipment. It has been shown in previous reports that connector contact failure causes the parasitic inductance and radiated electromagnetic noise to increase. However, there is not enough discussion about the effects of connector torque fluctuation on the surrounding electromagnetic environment. Thus, in this study, the effects of a changing connector torque value on the circuit response and near field at the contact boundary were investigated. Based on these results, we discuss the influence of torque fluctuation on the electromagnetic environment surrounding the connector.

  • Relationships between Break Arc Behaviors of AgSnO2 Contacts and Lorentz Force to be Applied by an External Magnetic Force in a DC Inductive Load Circuit Up to 20V-17A Open Access

    Seika TOKUMITSU  Makoto HASEGAWA  

     
    BRIEF PAPER

      Vol:
    E102-C No:9
      Page(s):
    641-645

    When AgSnO2 contacts were operated to break an inductive DC load current of 14V-12A, 20V-7A or 20V-17A at a contact opening speed of 10mm/sec or slower, application of an external magnetic field resulted in reductions in break arc durations even without magnetic blowing. Simple estimation of Lorentz force to be applied onto arc column revealed that a certain minimum magnitude of Lorentz force seems to be required for initiating arc blowing. Certain relationships between the Lorentz force magnitude and the timing of metallic-to-gaseous phase transition were also found to exist.

  • Analytical Modeling of the Silicon Carbide (SiC) MOSFET during Switching Transition for EMI Investigation

    Yingzhe WU  Hui LI  Wenjie MA  Dingxin JIN  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E102-C No:9
      Page(s):
    646-657

    With the advantages of higher blocking voltage, higher operation temperature, fast-switching characteristics, and lower switching losses, the silicon carbide (SiC) MOSFET has attracted more attentions and become an available replacement of traditional silicon (Si) power semiconductor in applications. Despite of all the merits above, electromagnetic interference (EMI) issues will be induced consequently by the ultra-fast switching transitions of the SiC MOSFET. To quickly and precisely assess the switching behaviors of the SiC MOSFET for EMI investigation, an analytical model is proposed. This model has comprehensively considered most of the key factors, including parasitic inductances, non-linearity of the junction capacitors, negative feedback effect of Ls and Cgd shared by the power and the gate stage loops, non-linearity of the trans-conductance, and skin effect during voltage and current ringing stages, which will considerably affect the switching performance of the SiC MOSFET. Additionally, a finite-state machine (FSM) is especially utilized so as to analytically and intuitively describe the switching behaviors of the SiC MOSFET via Stateflow. Based on double pulse test (DPT), the effectiveness and correctness of the proposed model are validated through the comparison between the calculated and the measured waveforms during switching transitions. Besides, the model can appropriately depict the spectrum of the drain-source voltage of the MOSFET and is suitable for EMI investigation in applying of SiC devices.

  • Recovering Transitive Traceability Links among Various Software Artifacts for Developers Open Access

    Ryosuke TSUCHIYA  Kazuki NISHIKAWA  Hironori WASHIZAKI  Yoshiaki FUKAZAWA  Yuya SHINOHARA  Keishi OSHIMA  Ryota MIBE  

     
    PAPER-Software Engineering

      Pubricized:
    2019/06/07
      Vol:
    E102-D No:9
      Page(s):
    1750-1760

    Traceability links between software artifacts can assist in several software development tasks. There are some automatic traceability recovery methods that help with managing the massive number of software artifacts and their relationships, but they do not work well for software artifacts whose descriptions are different in terms of language or abstraction level. To overcome these weakness, we propose the Connecting Links Method (CLM), which recovers transitive traceability links between two artifacts by intermediating a third artifact. In order to apply CLM for general use without limitation in terms of software artifact type, we have designed a standardized method to calculate the relation score of transitive traceability links using the scores of direct traceability links between three artifacts. Furthermore, we propose an improvement of CLM by considering software version. We evaluated CLM by applying it to three software products and found that it is more effective for software artifacts whose language type or vocabulary are different compared to previous methods using textual similarity.

  • FOREWORD Open Access

    Toshiya NAKAGUCHI  

     
    FOREWORD

      Vol:
    E102-A No:9
      Page(s):
    1195-1195
  • Congestion Control for Multi-Source Content Retrieval in Content Centric Networks

    Junpei MIYOSHI  Satoshi KAWAUCHI  Masaki BANDAI  Miki YAMAMOTO  

     
    PAPER

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1832-1841

    CCN/NDN (Content-Centric Networking/Named-Data Networking) is one of the most promising content-oriented network architectures. In CCN/NDN, forwarding information base (FIB) might have multiple entries for a same content name prefix, which means CCN/NDN potentially supports multi-source download. When a content is obtained from multiple sources, the technical knowledge obtained for congestion control in the current Internet cannot be simply applied. This is because in the current Internet, FIB is restricted to have only one entry for each IP address prefix, which causes quite different path feature from CCN/NDN. This paper proposes a new congestion control for CCN/NDN with multi-source content retrieval. The proposed congestion control is composed of end-to-end window flow control and router assisted Interest forwarding control, and enables transmission rate regulation only on a congested branch.

  • Dynamic Throughput Allocation among Multiple Servers for Heterogeneous Storage System

    Zhisheng HUO  Limin XIAO  Zhenxue HE  Xiaoling RONG  Bing WEI  

     
    PAPER-Computer System

      Pubricized:
    2019/05/27
      Vol:
    E102-D No:9
      Page(s):
    1731-1739

    Previous works have studied the throughput allocation of the heterogeneous storage system consisting of SSD and HDD in the dynamic setting where users are not all present in the system simultaneously, but those researches make multiple servers as one large resource pool, and cannot cope with the multi-server environment. We design a dynamic throughput allocation mechanism named DAM, which can handle the throughput allocation of multiple heterogeneous servers in the dynamic setting, and can provide a number of desirable properties. The experimental results show that DAM can make one dynamic throughput allocation of multiple servers for making sure users' local allocations in each server, and can provide one efficient and fair throughput allocation in the whole system.

  • Reducing CPU Power Consumption with Device Utilization-Aware DVFS for Low-Latency SSDs

    Satoshi IMAMURA  Eiji YOSHIDA  Kazuichi OE  

     
    PAPER-Computer System

      Pubricized:
    2019/06/18
      Vol:
    E102-D No:9
      Page(s):
    1740-1749

    Emerging solid state drives (SSDs) based on a next-generation memory technology have been recently released in market. In this work, we call them low-latency SSDs because the device latency of them is an order of magnitude lower than that of conventional NAND flash SSDs. Although low-latency SSDs can drastically reduce an I/O latency perceived by an application, the overhead of OS processing included in the I/O latency has become noticeable because of the very low device latency. Since the OS processing is executed on a CPU core, its operating frequency should be maximized for reducing the OS overhead. However, a higher core frequency causes the higher CPU power consumption during I/O accesses to low-latency SSDs. Therefore, we propose the device utilization-aware DVFS (DU-DVFS) technique that periodically monitors the utilization of a target block device and applies dynamic voltage and frequency scaling (DVFS) to CPU cores executing I/O-intensive processes only when the block device is fully utilized. In this case, DU-DVFS can reduce the CPU power consumption without hurting performance because the delay of OS processing incurred by decreasing the core frequency can be hidden. Our evaluation with 28 I/O-intensive workloads on a real server containing an Intel® Optane™ SSD demonstrates that DU-DVFS reduces the CPU power consumption by 41.4% on average (up to 53.8%) with a negligible performance degradation, compared to a standard DVFS governor on Linux. Moreover, the evaluation with multiprogrammed workloads composed of I/O-intensive and non-I/O-intensive programs shows that DU-DVFS is also effective for them because it can apply DVFS only to CPU cores executing I/O-intensive processes.

  • A Knowledge Representation Based User-Driven Ontology Summarization Method

    Yuehang DING  Hongtao YU  Jianpeng ZHANG  Huanruo LI  Yunjie GU  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2019/05/30
      Vol:
    E102-D No:9
      Page(s):
    1870-1873

    As the superstructure of knowledge graph, ontology has been widely applied in knowledge engineering. However, it becomes increasingly difficult to be practiced and comprehended due to the growing data size and complexity of schemas. Hence, ontology summarization surfaced to enhance the comprehension and application of ontology. Existing summarization methods mainly focus on ontology's topology without taking semantic information into consideration, while human understand information based on semantics. Thus, we proposed a novel algorithm to integrate semantic information and topological information, which enables ontology to be more understandable. In our work, semantic and topological information are represented by concept vectors, a set of high-dimensional vectors. Distances between concept vectors represent concepts' similarity and we selected important concepts following these two criteria: 1) the distances from important concepts to normal concepts should be as short as possible, which indicates that important concepts could summarize normal concepts well; 2) the distances from an important concept to the others should be as long as possible which ensures that important concepts are not similar to each other. K-means++ is adopted to select important concepts. Lastly, we performed extensive evaluations to compare our algorithm with existing ones. The evaluations prove that our approach performs better than the others in most of the cases.

  • Multi-Level Attention Based BLSTM Neural Network for Biomedical Event Extraction

    Xinyu HE  Lishuang LI  Xingchen SONG  Degen HUANG  Fuji REN  

     
    PAPER-Natural Language Processing

      Pubricized:
    2019/04/26
      Vol:
    E102-D No:9
      Page(s):
    1842-1850

    Biomedical event extraction is an important and challenging task in Information Extraction, which plays a key role for medicine research and disease prevention. Most of the existing event detection methods are based on shallow machine learning methods which mainly rely on domain knowledge and elaborately designed features. Another challenge is that some crucial information as well as the interactions among words or arguments may be ignored since most works treat words and sentences equally. Therefore, we employ a Bidirectional Long Short Term Memory (BLSTM) neural network for event extraction, which can skip handcrafted complex feature extraction. Furthermore, we propose a multi-level attention mechanism, including word level attention which determines the importance of words in a sentence, and the sentence level attention which determines the importance of relevant arguments. Finally, we train dependency word embeddings and add sentence vectors to enrich semantic information. The experimental results show that our model achieves an F-score of 59.61% on the commonly used dataset (MLEE) of biomedical event extraction, which outperforms other state-of-the-art methods.

  • Compressed Sensing in Magnetic Resonance Imaging Using Non-Randomly Under-Sampled Signal in Cartesian Coordinates

    Ryo KAZAMA  Kazuki SEKINE  Satoshi ITO  

     
    PAPER-Biological Engineering

      Pubricized:
    2019/05/31
      Vol:
    E102-D No:9
      Page(s):
    1851-1859

    Image quality depends on the randomness of the k-space signal under-sampling in compressed sensing MRI (CS-MRI), especially for two-dimensional image acquisition. We investigate the feasibility of non-random signal under-sampling CS-MRI to stabilize the quality of reconstructed images and avoid arbitrariness in sampling point selection. Regular signal under-sampling for the phase-encoding direction is adopted, in which sampling points are chosen at equal intervals for the phase-encoding direction while varying the sampling density. Curvelet transform was adopted to remove the aliasing artifacts due to regular signal under-sampling. To increase the incoherence between the measurement matrix and the sparsifying transform function, the scale of the curvelet transform was varied in each iterative image reconstruction step. We evaluated the obtained images by the peak-signal-to-noise ratio and root mean squared error in localized 3×3 pixel regions. Simulation studies and experiments showed that the signal-to-noise ratio and the structural similarity index of reconstructed images were comparable to standard random under-sampling CS. This study demonstrated the feasibility of non-random under-sampling based CS by using the multi-scale curvelet transform as a sparsifying transform function. The technique may help to stabilize the obtained image quality in CS-MRI.

  • Multi-Party Computation for Modular Exponentiation Based on Replicated Secret Sharing

    Kazuma OHARA  Yohei WATANABE  Mitsugu IWAMOTO  Kazuo OHTA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1079-1090

    In recent years, multi-party computation (MPC) frameworks based on replicated secret sharing schemes (RSSS) have attracted the attention as a method to achieve high efficiency among known MPCs. However, the RSSS-based MPCs are still inefficient for several heavy computations like algebraic operations, as they require a large amount and number of communication proportional to the number of multiplications in the operations (which is not the case with other secret sharing-based MPCs). In this paper, we propose RSSS-based three-party computation protocols for modular exponentiation, which is one of the most popular algebraic operations, on the case where the base is public and the exponent is private. Our proposed schemes are simple and efficient in both of the asymptotic and practical sense. On the asymptotic efficiency, the proposed schemes require O(n)-bit communication and O(1) rounds,where n is the secret-value size, in the best setting, whereas the previous scheme requires O(n2)-bit communication and O(n) rounds. On the practical efficiency, we show the performance of our protocol by experiments on the scenario for distributed signatures, which is useful for secure key management on the distributed environment (e.g., distributed ledgers). As one of the cases, our implementation performs a modular exponentiation on a 3,072-bit discrete-log group and 256-bit exponent with roughly 300ms, which is an acceptable parameter for 128-bit security, even in the WAN setting.

3821-3840hit(42807hit)