The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

3681-3700hit(42807hit)

  • Enhanced Selected Mapping for Impulsive Noise Blanking in Multi-Carrier Power-Line Communication Systems Open Access

    Tomoya KAGEYAMA  Osamu MUTA  Haris GACANIN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2174-2182

    In this paper, we propose an enhanced selected mapping (e-SLM) technique to improve the performance of OFDM-PLC systems under impulsive noise. At the transmitter, the best transmit sequence is selected from among possible candidates so as to minimize the weighted sum of transmit signal peak power and the estimated receive one, where the received signal peak power is estimated at the transmitter using channel state information (CSI). At the receiver, a nonlinear blanking is applied to hold the impulsive noise under a given threshold, where impulsive noise detection accuracy is improved by the proposed e-SLM. We evaluate the probability of false alarms raised by impulsive noise detection and bit error rate (BER) of OFDM-PLC system using the proposed e-SLM. The results show the effectiveness of the proposed method in OFDM-PLC system compared with the conventional blanking technique.

  • Large Size In-Cell Capacitive Touch Panel and Force Touch Development for Automotive Displays Open Access

    Naoki TAKADA  Chihiro TANAKA  Toshihiko TANAKA  Yuto KAKINOKI  Takayuki NAKANISHI  Naoshi GOTO  

     
    INVITED PAPER

      Vol:
    E102-C No:11
      Page(s):
    795-801

    We have developed the world's largest 16.7-inch hybrid in-cell touch panel. To realize the large sized in-cell touch panel, we applied a vertical Vcom system and low resistance sensor, which are JDI's original technologies. For glove touch function, we applied mutual bundled driving, which increases the signal intensity higher. The panel also has a low surface reflection, curved-shaped, and non-rectangular characteristics, which are particular requirements in the automotive market. The over 15-inch hybrid in-cell touch panel adheres to automotive quality requirements. We have also developed a force touch panel, which is a new human machine interface (HMI) based on a hybrid in-cell touch panel in automotive display. This study reports on the effect of the improvements on the in-plane variation of force touch and the value change of the force signal under different environment conditions. We also a introduce force touch implemented prototype.

  • Decoding via Sampling

    Shigeki MIYAKE  Jun MURAMATSU  Takahiro YAMAGUCHI  

     
    PAPER-Coding Theory

      Vol:
    E102-A No:11
      Page(s):
    1512-1523

    We propose a novel decoding algorithm called “sampling decoding”, which is constructed using a Markov Chain Monte Carlo (MCMC) method and implements Maximum a Posteriori Probability decoding in an approximate manner. It is also shown that sampling decoding can be easily extended to universal coding or to be applicable for Markov sources. In simulation experiments comparing the proposed algorithm with the sum-product decoding algorithm, sampling decoding is shown to perform better as sample size increases, although decoding time becomes proportionally longer. The mixing time, which measures how large a sample size is needed for the MCMC process to converge to the limiting distribution, is evaluated for a simple coding matrix construction.

  • Peer-to-Peer Video Streaming of Non-Uniform Bitrate with Guaranteed Delivery Hops Open Access

    Satoshi FUJITA  

     
    PAPER-Information Network

      Pubricized:
    2019/08/09
      Vol:
    E102-D No:11
      Page(s):
    2176-2183

    In conventional video streaming systems, various kind of video streams are delivered from a dedicated server (e.g., edge server) to the subscribers so that a video stream of higher quality level is encoded with a higher bitrate. In this paper, we consider the problem of delivering those video streams with the assistance of Peer-to-Peer (P2P) technology with as small server cost as possible while keeping the performance of video streaming in terms of the throughput and the latency. The basic idea of the proposed method is to divide a given video stream into several sub-streams called stripes as evenly as possible and to deliver those stripes to the subscribers through different tree-structured overlays. Such a stripe-based approach could average the load of peers, and could effectively resolve the overloading of the overlay for high quality video streams. The performance of the proposed method is evaluated numerically. The result of evaluations indicates that the proposed method significantly reduces the server cost necessary to guarantee a designated delivery hops, compared with a naive tree-based scheme.

  • New Classes of Efficient MDS Transformations

    Yubo LI  Kangquan LI  Longjiang QU  Chao LI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:11
      Page(s):
    1504-1511

    MDS transformation plays an important role in resisting against differential cryptanalysis (DC) and linear cryptanalysis (LC). Recently, M. Sajadieh, et al.[15] designed an efficient recursive diffusion layer with Feistel-like structures. Moreover, they obtained an MDS transformation which is related to a linear function and the inverse is as lightweight as itself. Based on this work, we consider one specific form of linear functions to get the diffusion layer with low XOR gates for the hardware implementation by using temporary registers. We give two criteria to reduce the construction space and obtain six new classes of lightweight MDS transformations. Some of our constructions with one bundle-based LFSRs have as low XOR gates as previous best known results. We expect that these results may supply more choices for the design of MDS transformations in the (lightweight) block cipher algorithm.

  • Light Field Coding Using Weighted Binary Images

    Koji KOMATSU  Kohei ISECHI  Keita TAKAHASHI  Toshiaki FUJII  

     
    PAPER

      Pubricized:
    2019/07/03
      Vol:
    E102-D No:11
      Page(s):
    2110-2119

    We propose an efficient coding scheme for a dense light field, i.e., a set of multi-viewpoint images taken with very small viewpoint intervals. The key idea behind our proposal is that a light field is represented using only weighted binary images, where several binary images and corresponding weight values are chosen so as to optimally approximate the light field. The proposed coding scheme is completely different from those of modern image/video coding standards that involve more complex procedures such as intra/inter-frame prediction and transforms. One advantage of our method is the extreme simplicity of the decoding process, which will lead to a faster and less power-hungry decoder than those of the standard codecs. Another useful aspect of our proposal is that our coding method can be made scalable, where the accuracy of the decoded light field is improved in a progressive manner as we use more encoded information. Thanks to the divide-and-conquer strategy adopted for the scalable coding, we can also substantially reduce the computational complexity of the encoding process. Although our method is still in the early research phase, experimental results demonstrated that it achieves reasonable rate-distortion performances compared with those of the standard video codecs.

  • Adaptive Channel Access Control Solving Compound Problem of Hidden Nodes and Continuous Collisions among Periodic Data Flows

    Anh-Huy NGUYEN  Yosuke TANIGAWA  Hideki TODE  

     
    PAPER-Network

      Pubricized:
    2019/05/21
      Vol:
    E102-B No:11
      Page(s):
    2113-2125

    With the rapid increase in IoT (Internet of Things) applications, more sensor devices, generating periodic data flows whose packets are transmitted at regular intervals, are being incorporated into WSNs (Wireless Sensor Networks). However, packet collision caused by the hidden node problem is becoming serious, particularly in large-scale multi-hop WSNs. Moreover, focusing on periodic data flows, continuous packet collisions among periodic data flows occur if the periodic packet transmission phases become synchronized. In this paper, we tackle the compounded negative effect of the hidden node problem and the continuous collision problem among periodic data flows. As this is a complex variant of the hidden node problem, there is no simple and well-studied solution. To solve this problem, we propose a new MAC layer mechanism. The proposed method predicts a future risky duration during which a collision can be caused by hidden nodes by taking into account the periodic characteristics of data packet generation. In the risky duration, each sensor node stops transmitting data packets in order to avoid collisions. To the best of our knowledge, this is the first paper that considers the compounded effect of hidden nodes and continuous collisions among periodic data flows. Other advantages of the proposed method include eliminating the need for any new control packets and it can be implemented in widely-diffused IEEE 802.11 and IEEE 802.15.4 devices.

  • HDR Image Synthesis Using Visual Brightness Mapping and Local Surround-Based Image Fusion

    Sung-Hak LEE  

     
    PAPER

      Vol:
    E102-C No:11
      Page(s):
    802-809

    An HDR (High Dynamic Range) image synthesis is a method which is to photograph scenes with wide luminance range and to reproduce images close to real visual scenes on an LDR (Low Dynamic Range) display. In general, HDR images are reproduced by taking images with various camera exposures and using the tone synthesis of several images. In this paper, we propose an HDR image tone mapping method based on a visual brightness function using dual exposed images and a synthesis algorithm based on local surround. The proposed algorithm has improved boundary errors and color balance compared with existing methods. Also, it improves blurring and noise amplification due to image mixing.

  • FOREWORD Open Access

    Toshiaki FUJII  

     
    FOREWORD

      Vol:
    E102-D No:11
      Page(s):
    2082-2082
  • A Trend-Shift Model for Global Factor Analysis of Investment Products

    Makoto KIRIHATA  Qiang MA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/08/13
      Vol:
    E102-D No:11
      Page(s):
    2205-2213

    Recently, more and more people start investing. Understanding the factors affecting financial products is important for making investment decisions. However, it is difficult to understand factors for novices because various factors affect each other. Various technique has been studied, but conventional factor analysis methods focus on revealing the impact of factors over a certain period locally, and it is not easy to predict net asset values. As a reasonable solution for the prediction of net asset values, in this paper, we propose a trend shift model for the global analysis of factors by introducing trend change points as shift interference variables into state space models. In addition, to realize the trend shift model efficiently, we propose an effective trend detection method, TP-TBSM (two-phase TBSM), by extending TBSM (trend-based segmentation method). Comparing with TBSM, TP-TBSM could detect trends flexibly by reducing the dependence on parameters. We conduct experiments with eleven investment trust products and reveal the usefulness and effectiveness of the proposed model and method.

  • Personalized Food Image Classifier Considering Time-Dependent and Item-Dependent Food Distribution Open Access

    Qing YU  Masashi ANZAWA  Sosuke AMANO  Kiyoharu AIZAWA  

     
    PAPER

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:11
      Page(s):
    2120-2126

    Since the development of food diaries could enable people to develop healthy eating habits, food image recognition is in high demand to reduce the effort in food recording. Previous studies have worked on this challenging domain with datasets having fixed numbers of samples and classes. However, in the real-world setting, it is impossible to include all of the foods in the database because the number of classes of foods is large and increases continually. In addition to that, inter-class similarity and intra-class diversity also bring difficulties to the recognition. In this paper, we solve these problems by using deep convolutional neural network features to build a personalized classifier which incrementally learns the user's data and adapts to the user's eating habit. As a result, we achieved the state-of-the-art accuracy of food image recognition by the personalization of 300 food records per user.

  • Mapping a Quantum Circuit to 2D Nearest Neighbor Architecture by Changing the Gate Order Open Access

    Wakaki HATTORI  Shigeru YAMASHITA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/07/25
      Vol:
    E102-D No:11
      Page(s):
    2127-2134

    This paper proposes a new approach to optimize the number of necessary SWAP gates when we perform a quantum circuit on a two-dimensional (2D) NNA. Our new idea is to change the order of quantum gates (if possible) so that each sub-circuit has only gates performing on adjacent qubits. For each sub-circuit, we utilize a SAT solver to find the best qubit placement such that the sub-circuit has only gates on adjacent qubits. Each sub-circuit may have a different qubit placement such that we do not need SWAP gates for the sub-circuit. Thus, we insert SWAP gates between two sub-circuits to change the qubit placement which is desirable for the following sub-circuit. To reduce the number of such SWAP gates between two sub-circuits, we utilize A* algorithm.

  • A General Perfect Cyclic Interference Alignment by Propagation Delay for Arbitrary X Channels with Two Receivers Open Access

    Conggai LI  Feng LIU  Shuchao JIANG  Yanli XU  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1580-1585

    Interference alignment (IA) in temporal domain is important in the case of single-antenna vehicle communications. In this paper, perfect cyclic IA based on propagation delay is extended to the K×2 X channels with two receivers and arbitrary transmitters K≥2, which achieves the maximal multiplexing gain by obtaining the theoretical degree of freedom of 2K/(K+1). We deduce the alignment and separability conditions, and propose a general scheme which is flexible in setting the index of time-slot for IA at the receiver side. Furthermore, the feasibility of the proposed scheme in the two-/three- Euclidean space is analyzed and demonstrated.

  • Structural Compressed Network Coding for Data Collection in Cluster-Based Wireless Sensor Networks

    Yimin ZHAO  Song XIAO  Hongping GAN  Lizhao LI  Lina XIAO  

     
    PAPER-Network

      Pubricized:
    2019/05/21
      Vol:
    E102-B No:11
      Page(s):
    2126-2138

    To efficiently collect sensor readings in cluster-based wireless sensor networks, we propose a structural compressed network coding (SCNC) scheme that jointly considers structural compressed sensing (SCS) and network coding (NC). The proposed scheme exploits the structural compressibility of sensor readings for data compression and reconstruction. Random linear network coding (RLNC) is used to re-project the measurements and thus enhance network reliability. Furthermore, we calculate the energy consumption of intra- and inter-cluster transmission and analyze the effect of the cluster size on the total transmission energy consumption. To that end, we introduce an iterative reweighed sparsity recovery algorithm to address the all-or-nothing effect of RLNC and decrease the recovery error. Experiments show that the SCNC scheme can decrease the number of measurements required for decoding and improve the network's robustness, particularly when the loss rate is high. Moreover, the proposed recovery algorithm has better reconstruction performance than several other state-of-the-art recovery algorithms.

  • Prediction-Based Scale Adaptive Correlation Filter Tracker

    Zuopeng ZHAO  Hongda ZHANG  Yi LIU  Nana ZHOU  Han ZHENG  Shanyi SUN  Xiaoman LI  Sili XIA  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/07/30
      Vol:
    E102-D No:11
      Page(s):
    2267-2271

    Although correlation filter-based trackers have demonstrated excellent performance for visual object tracking, there remain several challenges to be addressed. In this work, we propose a novel tracker based on the correlation filter framework. Traditional trackers face difficulty in accurately adapting to changes in the scale of the target when the target moves quickly. To address this, we suggest a scale adaptive scheme based on prediction scales. We also incorporate a speed-based adaptive model update method to further improve overall tracking performance. Experiments with samples from the OTB100 and KITTI datasets demonstrate that our method outperforms existing state-of-the-art tracking algorithms in fast motion scenes.

  • Accelerating Stochastic Simulations on GPUs Using OpenCL

    Pilsung KANG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2019/07/23
      Vol:
    E102-D No:11
      Page(s):
    2253-2256

    Since first introduced in 2008 with the 1.0 specification, OpenCL has steadily evolved over the decade to increase its support for heterogeneous parallel systems. In this paper, we accelerate stochastic simulation of biochemical reaction networks on modern GPUs (graphics processing units) by means of the OpenCL programming language. In implementing the OpenCL version of the stochastic simulation algorithm, we carefully apply its data-parallel execution model to optimize the performance provided by the underlying hardware parallelism of the modern GPUs. To evaluate our OpenCL implementation of the stochastic simulation algorithm, we perform a comparative analysis in terms of the performance using the CPU-based cluster implementation and the NVidia CUDA implementation. In addition to the initial report on the performance of OpenCL on GPUs, we also discuss applicability and programmability of OpenCL in the context of GPU-based scientific computing.

  • An Exact Algorithm for the Arrow Placement Problem in Directed Graph Drawings

    Naoto KIDO  Sumio MASUDA  Kazuaki YAMAGUCHI  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E102-A No:11
      Page(s):
    1481-1489

    We consider the problem of placing arrows, which indicate the direction of each edge in directed graph drawings, without making them overlap other arrows, vertices and edges as much as possible. The following two methods have been proposed for this problem. One is an exact algorithm for the case in which the position of each arrow is restricted to some discrete points. The other is a heuristic algorithm for the case in which the arrow is allowed to move continuously on each edge. In this paper, we assume that the arrow positions are not restricted to discrete points and propose an exact algorithm for the problem of finding an arrow placement such that (a) the weighted sum of the numbers of overlaps with edges, vertices and other arrows is minimized and (b) the sum of the distances between the arrows and their edges' terminal vertices is minimized as a secondary objective. The proposed method solves this problem by reducing it to a mixed integer linear programming problem. Since this is an exponential time algorithm, we add a simple procedure as preprocessing to reduce the running time. Experimental results show that the proposed method can find a better arrow placement than the previous methods and the procedure for reducing the running time is effective.

  • Correlation of Column Sequences from the Arrays of Sidelnikov Sequences of Different Periods Open Access

    Min Kyu SONG  Hong-Yeop SONG  

     
    PAPER-Coding Theory

      Vol:
    E102-A No:10
      Page(s):
    1333-1339

    We show that the non-trivial correlation of two properly chosen column sequences of length q-1 from the array structure of two Sidelnikov sequences of periods qe-1 and qd-1, respectively, is upper-bounded by $(2d-1)sqrt{q} + 1$, if $2leq e < d < rac{1}{2}(sqrt{q}- rac{2}{sqrt{q}}+1)$. Based on this, we propose a construction by combining properly chosen columns from arrays of size $(q-1) imes rac{q^e-1}{q-1}$ with e=2,3,...,d. The combining process enlarge the family size while maintaining the upper-bound of maximum non-trivial correlation. We also propose an algorithm for generating the sequence family based on Chinese remainder theorem. The proposed algorithm is more efficient than brute force approach.

  • Emergence of an Onion-Like Network in Surface Growth and Its Strong Robustness

    Yukio HAYASHI  Yuki TANAKA  

     
    LETTER-Graphs and Networks

      Vol:
    E102-A No:10
      Page(s):
    1393-1396

    We numerically investigate that optimal robust onion-like networks can emerge even with the constraint of surface growth in supposing a spatially embedded transportation or communication system. To be onion-like, moderately long links are necessary in the attachment through intermediations inspired from a social organization theory.

  • Cross-Domain Deep Feature Combination for Bird Species Classification with Audio-Visual Data

    Naranchimeg BOLD  Chao ZHANG  Takuya AKASHI  

     
    PAPER-Multimedia Pattern Processing

      Pubricized:
    2019/06/27
      Vol:
    E102-D No:10
      Page(s):
    2033-2042

    In recent decade, many state-of-the-art algorithms on image classification as well as audio classification have achieved noticeable successes with the development of deep convolutional neural network (CNN). However, most of the works only exploit single type of training data. In this paper, we present a study on classifying bird species by exploiting the combination of both visual (images) and audio (sounds) data using CNN, which has been sparsely treated so far. Specifically, we propose CNN-based multimodal learning models in three types of fusion strategies (early, middle, late) to settle the issues of combining training data cross domains. The advantage of our proposed method lies on the fact that we can utilize CNN not only to extract features from image and audio data (spectrogram) but also to combine the features across modalities. In the experiment, we train and evaluate the network structure on a comprehensive CUB-200-2011 standard data set combing our originally collected audio data set with respect to the data species. We observe that a model which utilizes the combination of both data outperforms models trained with only an either type of data. We also show that transfer learning can significantly increase the classification performance.

3681-3700hit(42807hit)