The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ALG(2355hit)

341-360hit(2355hit)

  • Fully Parallelized LZW Decompression for CUDA-Enabled GPUs

    Shunji FUNASAKA  Koji NAKANO  Yasuaki ITO  

     
    PAPER-GPU computing

      Pubricized:
    2016/08/25
      Vol:
    E99-D No:12
      Page(s):
    2986-2994

    The main contribution of this paper is to present a work-optimal parallel algorithm for LZW decompression and to implement it in a CUDA-enabled GPU. Since sequential LZW decompression creates a dictionary table by reading codes in a compressed file one by one, it is not easy to parallelize it. We first present a work-optimal parallel LZW decompression algorithm on the CREW-PRAM (Concurrent-Read Exclusive-Write Parallel Random Access Machine), which is a standard theoretical parallel computing model with a shared memory. We then go on to present an efficient implementation of this parallel algorithm on a GPU. The experimental results show that our GPU implementation performs LZW decompression in 1.15 milliseconds for a gray scale TIFF image with 4096×3072 pixels stored in the global memory of GeForce GTX 980. On the other hand, sequential LZW decompression for the same image stored in the main memory of Intel Core i7 CPU takes 50.1 milliseconds. Thus, our parallel LZW decompression on the global memory of the GPU is 43.6 times faster than a sequential LZW decompression on the main memory of the CPU for this image. To show the applicability of our GPU implementation for LZW decompression, we evaluated the SSD-GPU data loading time for three scenarios. The experimental results show that the scenario using our LZW decompression on the GPU is faster than the others.

  • Global Hyperbolic Hopfield Neural Networks

    Masaki KOBAYASHI  

     
    PAPER-Nonlinear Problems

      Vol:
    E99-A No:12
      Page(s):
    2511-2516

    In recent years, applications of neural networks with Clifford algebra have become widespread. Hyperbolic numbers are useful Clifford algebra to deal with hyperbolic geometry. It is difficult when Hopfield neural network is extended to hyperbolic versions, though several models have been proposed. Multistate or continuous hyperbolic Hopfield neural networks are promising models. However, the connection weights and domain of activation function are limited to the right quadrant of hyperbolic plane, and the learning algorithms are restricted. In this work, the connection weights and activation function are extended to the entire hyperbolic plane. In addition, the energy is defined and it is proven that the energy does not increase.

  • An Improved Feature Selection Algorithm for Ordinal Classification

    Weiwei PAN  Qinhua HU  

     
    PAPER-Machine Learning

      Vol:
    E99-A No:12
      Page(s):
    2266-2274

    Ordinal classification is a class of special tasks in machine learning and pattern recognition. As to ordinal classification, there is an ordinal structure among different decision values. The monotonicity constraint between features and decision should be taken into account as the fundamental assumption. However, in real-world applications, this assumption may be not true. Only some candidate features, instead of all, are monotonic with decision. So the existing feature selection algorithms which are designed for nominal classification or monotonic classification are not suitable for ordinal classification. In this paper, we propose a feature selection algorithm for ordinal classification based on considering the non-monotonic and monotonic features separately. We first introduce an assumption of hybrid monotonic classification consistency and define a feature evaluation function to calculate the relevance between the features and decision for ordinal classification. Then, we combine the reported measure and genetic algorithm (GA) to search the optimal feature subset. A collection of numerical experiments are implemented to show that the proposed approach can effectively reduce the feature size and improve the classification performance.

  • Algebraic Decoding of BCH Codes over Symbol-Pair Read Channels: Cases of Two-Pair and Three-Pair Error Correction

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory and Techniques

      Vol:
    E99-A No:12
      Page(s):
    2179-2191

    In this paper, we discuss an algebraic decoding of BCH codes over symbol-pair read channels. The channels output overlapping pairs of symbols in storage applications. The pair distance and pair error are used in the channels. We define a polynomial that represents the positions of the pair errors as the error-locator polynomials and a polynomial that represents the positions of the pairs of a received pair vector in conflict as conflict-locator polynomial. In this paper, we propose algebraic methods for correcting two-pair and three-pair errors for BCH codes. First, we show the relation between the error-locator polynomials and the conflict-locator polynomial. Second, we show the relation among these polynomials and the syndromes. Finally, we provide how to correct the pair errors by solving equations including the relational expression by algebraic methods.

  • An Algorithm for Fast Implementation of AN-Aided Transmit Design in Secure MIMO System with SWIPT

    Xueqi ZHANG  Wei WU  Baoyun WANG  Jian LIU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E99-A No:12
      Page(s):
    2591-2596

    This letter investigates transmit optimization in multi-user multi-input multi-output (MIMO) wiretap channels. In particular, we address the transmit covariance optimization for an artificial-noise (AN)-aided secrecy rate maximization (SRM) when subject to individual harvested energy and average transmit power. Owing to the inefficiency of the conventional interior-point solvers in handling our formulated SRM problem, a custom-designed algorithm based on penalty function (PF) and projected gradient (PG) is proposed, which results in semi-closed form solutions. The proposed algorithm achieves about two orders of magnitude reduction of running time with nearly the same performance comparing to the existing interior-point solvers. In addition, the proposed algorithm can be extended to other power-limited transmit design problems. Simulation results demonstrate the excellent performance and high efficiency of the algorithm.

  • Computing K-Terminal Reliability of Circular-Arc Graphs

    Chien-Min CHEN  Min-Sheng LIN  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2016/09/06
      Vol:
    E99-D No:12
      Page(s):
    3047-3052

    Let G be a graph and K be a set of target vertices of G. Assume that all vertices of G, except the vertices in K, may fail with given probabilities. The K-terminal reliability of G is the probability that all vertices in K are mutually connected. This reliability problem is known to be #P-complete for general graphs. This work develops the first polynomial-time algorithm for computing the K-terminal reliability of circular-arc graphs.

  • The Exact Fast Algebraic Immunity of Two Subclasses of the Majority Function

    Deng TANG  Rong LUO  Xiaoni DU  

     
    LETTER-Cryptography and Information Security

      Vol:
    E99-A No:11
      Page(s):
    2084-2088

    To resist algebraic and fast algebraic attacks, Boolean functions used in stream ciphers should have optimal algebraic immunity and good fast algebraic immunity. One challenge of cryptographic Boolean functions is to determine their ability to resist fast algebraic attacks, which can be measured by their fast algebraic immunities. In this letter, we determine the exact values of fast algebraic immunity of the majority function of 2m and 2m+1 variables. This is the first time that the exact values of the fast algebraic immunity of an infinite class of symmetric Boolean functions with optimal algebraic immunity are determined.

  • Neural Network Location Based on Weight Optimization with Genetic Algorithm under the Condition of Less Information

    Jian Hui WANG  Jia Liang WANG  Da Ming WANG  Wei Jia CUI  Xiu Kun REN  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E99-B No:11
      Page(s):
    2323-2331

    This paper puts forward the concept of cellular network location with less information which can overcome the weaknesses of the cellular location technology in practical applications. After a systematic introduction of less-information location model, this paper presents a location algorithm based on AGA (Adaptive Genetic Algorithm) and an optimized RBF (Radical Basis Function) neural network. The virtues of this algorithm are that it has high location accuracy, reduces the location measurement parameters and effectively enhances the robustness. The simulation results show that under the condition of less information, the optimized location algorithm can effectively solve the fuzzy points in the location model and satisfy the FCC's (Federal Communications Commission) requirements on location accuracy.

  • An Efficient Backoff Algorithm Based on the Theory of Confidence Interval Estimation

    Chunyang LEI  Hongxia BIE  Gengfa FANG  Markus MUECK  Xuekun ZHANG  

     
    PAPER-Network

      Pubricized:
    2016/05/11
      Vol:
    E99-B No:10
      Page(s):
    2179-2186

    Channel state estimation-based backoff algorithms for channel access are being widely studied to solve wireless channel accessing and sharing problem especially in super dense wireless networks. In such algorithms, the precision of the channel state estimation determines the performance. How to make the estimation accurate in an efficient way to meet the system requirements is essential in designing the new channel access algorithms. In this paper, we first study the distribution and properties of inaccurate estimations using a novel biased estimation analysis model. We then propose an efficient backoff algorithm based on the theory of confidence interval estimation (BA-CIE), in which the minimum sample size is deduced to improve the contention window tuning efficiency, while a fault-tolerance interval structure is applied to reduce the inaccurate estimations so as to improve the contention window tuning accuracy. Our simulation results show that the throughput of our proposed BA-CIE algorithm can achieve 99% the theoretical maximum throughput of IEEE 802.11 networks, thanks to the improved contention window tuning performance.

  • Policy Optimization for Spoken Dialog Management Using Genetic Algorithm

    Hang REN  Qingwei ZHAO  Yonghong YAN  

     
    PAPER-Spoken dialog system

      Pubricized:
    2016/07/19
      Vol:
    E99-D No:10
      Page(s):
    2499-2507

    The optimization of spoken dialog management policies is a non-trivial task due to the erroneous inputs from speech recognition and language understanding modules. The dialog manager needs to ground uncertain semantic information at times to fully understand the need of human users and successfully complete the required dialog tasks. Approaches based on reinforcement learning are currently mainstream in academia and have been proved to be effective, especially when operating in noisy environments. However, in reinforcement learning the dialog strategy is often represented by complex numeric model and thus is incomprehensible to humans. The trained policies are very difficult for dialog system designers to verify or modify, which largely limits the deployment for commercial applications. In this paper we propose a novel framework for optimizing dialog policies specified in human-readable domain language using genetic algorithm. We present learning algorithms using user simulator and real human-machine dialog corpora. Empirical experimental results show that the proposed approach can achieve competitive performance on par with some state-of-the-art reinforcement learning algorithms, while maintaining a comprehensible policy structure.

  • Fast Coding-Mode Selection and CU-Depth Prediction Algorithm Based on Text-Block Recognition for Screen Content Coding

    Mengmeng ZHANG  Ang ZHU  Zhi LIU  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2016/07/12
      Vol:
    E99-D No:10
      Page(s):
    2651-2655

    As an important extension of high-efficiency video coding (HEVC), screen content coding (SCC) includes various new coding modes, such as Intra Block Copy (IBC), Palette-based coding (Palette), and Adaptive Color Transform (ACT). These new tools have improved screen content encoding performance. This paper proposed a novel and fast algorithm by classifying Code Units (CUs) as text CUs or non-text CUs. For text CUs, the Intra mode was skipped in the compression process, whereas for non-text CUs, the IBC mode was skipped. The current CU depth range was then predicted according to its adjacent left CU depth level. Compared with the reference software HM16.7+SCM5.4, the proposed algorithm reduced encoding time by 23% on average and achieved an approximate 0.44% increase in Bjøntegaard delta bit rate and a negligible peak signal-to-noise ratio loss.

  • A Linear Time Algorithm for Finding a Spanning Tree with Non-Terminal Set VNT on Cographs

    Shin-ichi NAKAYAMA  Shigeru MASUYAMA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2016/07/12
      Vol:
    E99-D No:10
      Page(s):
    2574-2584

    Given a graph G=(V,E) where V and E are a vertex and an edge set, respectively, specified with a subset VNT of vertices called a non-terminal set, the spanning tree with non-terminal set VNT is a connected and acyclic spanning subgraph of G that contains all the vertices of V where each vertex in a non-terminal set is not a leaf. In the case where each edge has the weight of a nonnegative integer, the problem of finding a minimum spanning tree with a non-terminal set VNT of G was known to be NP-hard. However, the complexity of finding a spanning tree on general graphs where each edge has the weight of one was unknown. In this paper, we consider this problem and first show that it is NP-hard even if each edge has the weight of one on general graphs. We also show that if G is a cograph then finding a spanning tree with a non-terminal set VNT of G is linearly solvable when each edge has the weight of one.

  • On the Three-Dimensional Channel Routing

    Satoshi TAYU  Toshihiko TAKAHASHI  Eita KOBAYASHI  Shuichi UENO  

     
    PAPER-Graphs and Networks

      Vol:
    E99-A No:10
      Page(s):
    1813-1821

    The 3-D channel routing is a fundamental problem on the physical design of 3-D integrated circuits. The 3-D channel is a 3-D grid G and the terminals are vertices of G located in the top and bottom layers. A net is a set of terminals to be connected. The objective of the 3-D channel routing problem is to connect the terminals in each net with a Steiner tree (wire) in G using as few layers as possible and as short wires as possible in such a way that wires for distinct nets are disjoint. This paper shows that the problem is intractable. We also show that a sparse set of ν 2-terminal nets can be routed in a 3-D channel with O(√ν) layers using wires of length O(√ν).

  • Non-Crossover and Multi-Mutation Based Genetic Algorithm for Flexible Job-Shop Scheduling Problem

    Zhongshan ZHANG  Yuning CHEN  Yuejin TAN  Jungang YAN  

     
    PAPER-Mathematical Systems Science

      Vol:
    E99-A No:10
      Page(s):
    1856-1862

    This paper presents a non-crossover and multi-mutation based genetic algorithm (NMGA) for the Flexible Job-shop Scheduling problem (FJSP) with the criterion to minimize the maximum completion time (makespan). Aiming at the characteristics of FJSP, three mutation operators based on operation sequence coding and machine assignment coding are proposed: flip, slide, and swap. Meanwhile, the NMGA framework, coding scheme, as well as the decoding algorithm are also specially designed for the FJSP. In the framework, recombination operator crossover is not included and a special selection strategy is employed. Computational results based on a set of representative benchmark problems were provided. The evidence indicates that the proposed algorithm is superior to several recently published genetic algorithms in terms of solution quality and convergence ability.

  • LAB-LRU: A Life-Aware Buffer Management Algorithm for NAND Flash Memory

    Liyu WANG  Lan CHEN  Xiaoran HAO  

     
    LETTER-Computer System

      Pubricized:
    2016/06/21
      Vol:
    E99-D No:10
      Page(s):
    2633-2637

    NAND flash memory has been widely used in storage systems. Aiming to design an efficient buffer policy for NAND flash memory, a life-aware buffer management algorithm named LAB-LRU is proposed, which manages the buffer by three LRU lists. A life value is defined for every page and the active pages with higher life value can stay longer in the buffer. The definition of life value considers the effect of access frequency, recency and the cost of flash read and write operations. A series of trace-driven simulations are carried out and the experimental results show that the proposed LAB-LRU algorithm outperforms the previous best-known algorithms significantly in terms of the buffer hit ratio, the numbers of flash write and read operations and overall runtime.

  • Infinite-Horizon Team-Optimal Incentive Stackelberg Games for Linear Stochastic Systems

    Hiroaki MUKAIDANI  

     
    LETTER-Systems and Control

      Vol:
    E99-A No:9
      Page(s):
    1721-1725

    In this paper, an infinite-horizon team-optimal incentive Stackelberg strategy is investigated for a class of stochastic linear systems with many non-cooperative leaders and one follower. An incentive structure is adopted which allows for the leader's team-optimal Nash solution. It is shown that the incentive strategy set can be obtained by solving the cross-coupled stochastic algebraic Riccati equations (CCSAREs). In order to demonstrate the effectiveness of the proposed strategy, a numerical example is solved.

  • Cooperative/Parallel Kalman Filtering for Decentralized Network Navigation

    Wenyun GAO  Xi CHEN  Dexiu HU  Haisheng XU  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2016/03/18
      Vol:
    E99-B No:9
      Page(s):
    2087-2098

    This paper presents non-iterative cooperative/parallel Kalman filtering algorithms for decentralized network navigation, in which mobile nodes cooperate in both spatial and temporal domains to infer their positions. We begin by presenting an augmented minimum-mean-square error (MMSE) estimator for centralized navigation network, and then decouple it into a set of local sub-ones each corresponding to a mobile node; all these sub-estimators work in parallel and cooperatively — with the state estimates exchanging between neighbors — to provide results similar to those obtained by the augmented one. After that, we employ the approximation methods that adopted in the conventional nonlinear Kalman filters to calculate the second-order terms involved in these sub-estimators, and propose a decentralized cooperative/parallel Kalman filtering based network navigation framework. Finally, upon the framework, we present two cooperative/parallel Kalman filtering algorithms corresponding to the extended and unscented Kalman filters respectively, and compare them with conventional decentralized methods by simulations to show the superiority.

  • 2PTS: A Two-Phase Task Scheduling Algorithm for MapReduce

    Byungnam LIM  Yeeun SHIM  Yon Dohn CHUNG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2016/06/06
      Vol:
    E99-D No:9
      Page(s):
    2377-2380

    For an efficient processing of large data in a distributed system, Hadoop MapReduce performs task scheduling such that tasks are distributed with consideration of the data locality. The data locality, however, is limitedly exploited, since it is pursued one node at a time basis without considering the global optimality. In this paper, we propose a novel task scheduling algorithm that globally considers the data locality. Through experiments, we show our algorithm improves the performance of MapReduce in various situations.

  • Self-Adaptive Scaled Min-Sum Algorithm for LDPC Decoders Based on Delta-Min

    Keol CHO  Ki-Seok CHUNG  

     
    LETTER-Coding Theory

      Vol:
    E99-A No:8
      Page(s):
    1632-1634

    A self-adaptive scaled min-sum algorithm for LDPC decoding based on the difference between the first two minima of the check node messages (Δmin) is proposed. Δmin is utilized for adjusting the scaling factor of the check node messages, and simulation results show that the proposed algorithm improves the error correcting performance compared to existing algorithms.

  • Data Association in Bistatic MIMO of T/R-R Mode: Basis Decision and Performance Analysis

    Xiang DUAN  Zishu HE  Hongming LIU  Jun LI  

     
    PAPER-Digital Signal Processing

      Vol:
    E99-A No:8
      Page(s):
    1567-1575

    Bistatic multi-input multi-output (MIMO) radar has the capability of measuring the transmit angle from the receiving array, which means the existence of information redundancy and benefits data association. In this paper, a data association decision for bistatic MIMO radar is proposed and the performance advantages of bistatic MIMO radar in data association is analyzed and evaluated. First, the parameters obtained by receiving array are sent to the association center via coordinate conversion. Second, referencing the nearest neighbor association (NN) algorithm, an improved association decision is proposed with the transmit angle and target range as association statistics. This method can evade the adverse effects of the angle system errors to data association. Finally, data association probability in the presence of array directional error is derived and the correctness of derivation result is testified via Monte Carlo simulation experiments. Besides that performance comparison with the conventional phased array radar verifies the excellent performance of bistatic MIMO Radar in data association.

341-360hit(2355hit)