The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

4161-4180hit(18690hit)

  • Security Enhancement of Medical Imaging via Imperceptible and Robust Watermarking

    Manuel CEDILLO HERNANDEZ  Antonio CEDILLO HERNANDEZ  Francisco GARCIA UGALDE  Mariko NAKANO MIYATAKE  Hector PEREZ MEANA  

     
    LETTER-Information Network

      Pubricized:
    2015/05/28
      Vol:
    E98-D No:9
      Page(s):
    1702-1705

    In this letter we present an imperceptible and robust watermarking algorithm that uses a cryptographic hash function in the authentication application of digital medical imaging. In the proposed scheme we combine discrete Fourier transform (DFT) and local image masking to detect the watermark after a geometrical distortion and improve its imperceptibility. The image quality is measured by metrics currently used in digital image processing, such as VSNR, SSIM and PSNR.

  • Foreground Segmentation Using Morphological Operator and Histogram Analysis for Indoor Applications

    Kyounghoon JANG  Geun-Jun KIM  Hosang CHO  Bongsoon KANG  

     
    LETTER-Vision

      Vol:
    E98-A No:9
      Page(s):
    1998-2003

    This paper proposes a foreground segmentation method for indoor environments using depth images only. It uses a morphological operator and histogram analysis to segment the foreground. In order to compare the accuracy for foreground segmentation, we use metric measurements of false positive rate (FPR), false negative rate (FNR), total error (TE), and a similarity measure (S). A series of experimental results using video sequences collected under various circumstances are discussed. The proposed system is also designed in a field-programmable gate array (FPGA) implementation with low hardware resources.

  • Rate Adaptation Based on Exposure Assessment Using Rectenna Output for WLAN Station Powered with Microwave Power Transmission

    Shota YAMASHITA  Koichi SAKAGUCHI  Yong HUANG  Koji YAMAMOTO  Takayuki NISHIO  Masahiro MORIKURA  Naoki SHINOHARA  

     
    PAPER

      Vol:
    E98-B No:9
      Page(s):
    1785-1794

    This paper proposes a rate adaptation scheme (RAS) for a wireless local area network (WLAN) station powered with microwave power transmission (MPT). A WLAN station attempting to transmit data frames when exposed to microwave radiation for MPT, experiences a reduction in the physical (PHY) layer data rate because frames are lost even when the carrier sense mechanism is used. The key idea of the proposed scheme is to utilize the output of the rectenna used for receiving microwave power. Using rectenna output, a WLAN station based on the proposed scheme assesses whether the station is exposed to microwave radiation for MPT. Then, using historical data corresponding to the assessment result, the station selects an appropriate PHY data rate. The historical data are obtained from previous transmission results, e.g., historical data pertaining to the data frame loss ratio. The proposed scheme was implemented and verified through an experiment. Experimental results showed that the proposed scheme prevents the reduction in the PHY data rate, which is caused by the use of historical data stored in a single memory. Thus, the proposed scheme leads to an improvement in the WLAN throughput.

  • FPGA Hardware with Target-Reconfigurable Object Detector

    Yoshifumi YAZAWA  Tsutomu YOSHIMI  Teruyasu TSUZUKI  Tomomi DOHI  Yuji YAMAUCHI  Takayoshi YAMASHITA  Hironobu FUJIYOSHI  

     
    PAPER

      Pubricized:
    2015/06/22
      Vol:
    E98-D No:9
      Page(s):
    1637-1645

    Much effort has been applied to research on object detection by statistical learning methods in recent years, and the results of that work are expected to find use in fields such as ITS and security. Up to now, the research has included optimization of computational algorithms for real-time processing on hardware such as GPU's and FPGAs. Such optimization most often works only with particular parameters, which often forfeits the flexibility that comes with dynamic changing of the target object. We propose a hardware architecture for faster detection and flexible target reconfiguration while maintaining detection accuracy. Tests confirm operation in a practical time when implemented in an FPGA board.

  • Generation of a Zoomed Stereo Video Using Two Synchronized Videos with Different Magnifications

    Yusuke HAYASHI  Norihiko KAWAI  Tomokazu SATO  Miyuki OKUMOTO  Naokazu YOKOYA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2015/06/17
      Vol:
    E98-D No:9
      Page(s):
    1691-1701

    This paper proposes a novel approach to generate stereo video in which the zoom magnification is not constant. Although this has been achieved mechanically in a conventional way, it is necessary for this approach to develop a mechanically complex system for each stereo camera system. Instead of a mechanical solution, we employ an approach from the software side: by using a pair of zoomed and non-zoomed video, a part of the non-zoomed video image is cut out and super-resolved for generating stereo video without a special hardware. To achieve this, (1) the zoom magnification parameter is automatically determined by using distributions of intensities, and (2) the cutout image is super-resolved by using optically zoomed images as exemplars. The effectiveness of the proposed method is quantitatively and qualitatively validated through experiments.

  • Target Scattering Coefficients Estimation in Cognitive Radar under Temporally Correlated Target and Multiple Receive Antennas Scenario

    Peng CHEN  Lenan WU  

     
    PAPER-Sensing

      Vol:
    E98-B No:9
      Page(s):
    1914-1923

    In cognitive radar systems (CRSs), target scattering coefficients (TSC) can be utilized to improve the performance of target identification and classification. This work considers the problem of TSC estimation for temporally correlated target. Multiple receive antennas are adopted to receive the echo waveforms, which are interfered by the signal-dependent clutter. Unlike existing estimation methods in time domain, a novel estimation method based on Kalman filtering (KF) is proposed in frequency domain to exploit the temporal TSC correlation, and reduce the complexity of subsequent waveform optimization. Additionally, to minimize the mean square error of estimated TSC at each KF iteration, in contrary to existing works, we directly model the design process as an optimization problem, which is non-convex and cannot be solved efficiently. Therefore, we propose a novel method, similar in some way to semi-definite programming (SDP), to convert the non-convex problem into a convex one. Simulation results demonstrate that the estimation performance can be significantly improved by the KF estimation with optimized waveform.

  • Minimum Length of a Signal for Fundamental Frequency Estimation and Its Application

    Takahiro MURAKAMI  Hiroyuki YAMAGISHI  Yoshihisa ISHIDA  

     
    PAPER-Digital Signal Processing

      Vol:
    E98-A No:9
      Page(s):
    1914-1923

    The theoretically minimum length of a signal for fundamental frequency estimation in a noisy environment is discussed. Assuming that the noise is additive white Gaussian, it is known that a Cramér-Rao lower bound (CRLB) is given by the length and other parameters of the signal. In this paper, we define the minimum length as the length whose CRLB is less than or equal to the specific variance for any parameters of the signal. The specific variance is allowable variance of the estimate within an application of fundamental frequency estimation. By reformulating the CRLB with respect to the initial phase of the signal, the algorithms for determining the minimum length are proposed. In addition, we develop the methods of deciding the specific variance for general fundamental frequency estimation and pitch estimation. Simulation results in terms of both the fundamental frequency estimation and the pitch estimation show the validity of our approach.

  • Radar HRRP Target Recognition Based on the Improved Kernel Distance Fuzzy C-Means Clustering Method

    Kun CHEN  Yuehua LI  Xingjian XU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2015/06/08
      Vol:
    E98-D No:9
      Page(s):
    1683-1690

    To overcome the target-aspect sensitivity in radar high resolution range profile (HRRP) recognition, a novel method called Improved Kernel Distance Fuzzy C-means Clustering Method (IKDFCM) is proposed in this paper, which introduces kernel function into fuzzy c-means clustering and relaxes the constraint in the membership matrix. The new method finds the underlying geometric structure information hiding in HRRP target and uses it to overcome the HRRP target-aspect sensitivity. The relaxing of constraint in the membership matrix improves anti-noise performance and robustness of the algorithm. Finally, experiments on three kinds of ground HRRP target under different SNRs and four UCI datasets demonstrate the proposed method not only has better recognition accuracy but also more robust than the other three comparison methods.

  • Non-Orthogonal Multiple Access Using Intra-Beam Superposition Coding and Successive Interference Cancellation for Cellular MIMO Downlink

    Kenichi HIGUCHI  Yoshihisa KISHIYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:9
      Page(s):
    1888-1895

    We investigate non-orthogonal multiple access (NOMA) with a successive interference canceller (SIC) in the cellular multiple-input multiple-output (MIMO) downlink for systems beyond LTE-Advanced. Taking into account the overhead for the downlink reference signaling for channel estimation at the user terminal in the case of non-orthogonal multiuser multiplexing and the applicability of the SIC receiver in the MIMO downlink, we propose intra-beam superposition coding of a multiuser signal at the transmitter and the spatial filtering of inter-beam interference followed by the intra-beam SIC at the user terminal receiver. The intra-beam SIC cancels out the inter-user interference within a beam. Regarding the transmitter beamforming (precoding), in general, any kind of beamforming matrix determination criteria can be applied to the proposed NOMA method. In the paper, we assume open loop-type random beamforming, which is very efficient in terms of the amount of feedback information from the user terminal. Furthermore, we employ a weighted proportional fair (PF)-based resource (beam of each frequency block and power) allocation for the proposed method. Simulation results show that the proposed NOMA method using the intra-beam superposition coding and SIC simultaneously achieves better sum and cell-edge user throughput compared to orthogonal multiple access (OMA), which is widely used in 3.9 and 4G mobile communication systems.

  • Separation of Mass Spectra Based on Probabilistic Latent Component Analysis for Explosives Detection

    Yohei KAWAGUCHI  Masahito TOGAMI  Hisashi NAGANO  Yuichiro HASHIMOTO  Masuyuki SUGIYAMA  Yasuaki TAKADA  

     
    PAPER

      Vol:
    E98-A No:9
      Page(s):
    1888-1897

    A new algorithm for separating mass spectra into individual substances for explosives detection is proposed. In the field of mass spectrometry, separation methods, such as principal-component analysis (PCA) and independent-component analysis (ICA), are widely used. All components, however, have no negative values, and the orthogonality condition imposed on components also does not necessarily hold in the case of mass spectra. Because these methods allow negative values and PCA imposes an orthogonality condition, they are not suitable for separation of mass spectra. The proposed algorithm is based on probabilistic latent-component analysis (PLCA). PLCA is a statistical formulation of non-negative matrix factorization (NMF) using KL divergence. Because PLCA imposes the constraint of non-negativity but not orthogonality, the algorithm is effective for separating components of mass spectra. In addition, to estimate the components more accurately, a sparsity constraint is applied to PLCA for explosives detection. The main contribution is industrial application of the algorithm into an explosives-detection system. Results of an experimental evaluation of the algorithm with data obtained in a real railway station demonstrate that the proposed algorithm outperforms PCA and ICA. Also, results of calculation time demonstrate that the algorithm can work in real time.

  • Fast Estimation of Shadowing Effects in Millimeter-Wave Short Range Communication by Modified Edge Representation (MER)

    Maifuz ALI  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:9
      Page(s):
    1873-1881

    Radio channel modeling is fundamental for designing wireless communication systems. In millimeter or sub-millimeter wave short range communication, shadowing effect by electrically-large objects is one of the most important factors determining the field strength and thus the coverage. Unfortunately, numerical methods like MoM, FDTD, FEM are unable to compute the field scattered by large objects due to their excessive time and memory requirements. Ray theory like geometrical theory of diffraction (GTD) by Keller is an effective and popular solution but suffers various kinds of singularities at geometrical boundaries such as incidence shadow boundary (ISB) or reflection shadow boundary (RSB). Modified edge representation (MER) equivalent edge current (EEC) is an accurate and a fast high frequency diffraction technique which expresses the fields in terms of line integration. It adopts classical Keller-type knife-edge diffraction coefficients and still provides uniform and highly accurate fields everywhere including geometrical boundaries. MER is used here to compute the millimeter-wave field distribution in compact range communication systems where shadowing effects rather than multi-path ones dominate the radio environments. For further simplicity, trigonometric functions in Keller's diffraction coefficients are replaced by the path lengths of source to the observer via the edge point of integration of the scatterers in the form of Fresnel zone number (FZN). Complexity, Computation time and the memory were reduced drastically without degrading the accuracy. The dipole wave scattering from flat rectangular plates is discussed with numerical examples.

  • Mass Spectra Separation for Explosives Detection by Using an Attenuation Model

    Yohei KAWAGUCHI  Masahito TOGAMI  Hisashi NAGANO  Yuichiro HASHIMOTO  Masuyuki SUGIYAMA  Yasuaki TAKADA  

     
    PAPER

      Vol:
    E98-A No:9
      Page(s):
    1898-1905

    A new algorithm for separating mass spectra into individual substances is proposed for explosives detection. The conventional algorithm based on probabilistic latent component analysis (PLCA) is effective in many cases because it makes use of the fact that non-negativity and sparsity hold for mass spectra in explosives detection. The algorithm, however, fails to separate mass spectra in some cases because uncertainty can not be resolved only by non-negativity and sparsity constraints. To resolve the uncertainty, an algorithm based on shift-invariant PLCA (SIPLCA) utilizing temporal correlation of mass spectra is proposed in this paper. In addition, to prevent overfitting, the temporal correlation is modeled with a function representing attenuation by focusing on the fact that the amount of a substance is attenuated continuously and slowly with time. Results of an experimental evaluation of the algorithm with data obtained in a real railway station demonstrate that the proposed algorithm outperforms the PLCA-based conventional algorithm and the simple SIPLCA-based one. The main novelty of this paper is that an evaluation of the detection performance of explosives detection is demonstrated. Results of the evaluation indicate that the proposed separation algorithm can improve the detection performance.

  • Fast Fourier Transform Key Recovery for Integral Attacks

    Yosuke TODO  Kazumaro AOKI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E98-A No:9
      Page(s):
    1944-1952

    An integral attack is one of the most powerful attacks against block ciphers. We propose a new technique for the integral attack called the Fast Fourier Transform (FFT) key recovery. When N chosen plaintexts are required for the integral characteristic and the guessed key is k bits, a straightforward key recovery requires the time complexity of O(N2k). However, the FFT key recovery only requires the time complexity of O(N+k2k). As a previous result using FFT, at ICISC 2007, Collard etal proposed that FFT can reduce the time complexity of a linear attack. We show that FFT can also reduce the complexity of the integral attack. Moreover, the estimation of the complexity is very simple. We first show the complexity of the FFT key recovery against three structures, the Even-Mansour scheme, a key-alternating cipher, and the Feistel structure. As examples of these structures, we show integral attacks against Prøst, AES, PRESENT, and CLEFIA. As a result, an 8-round Prøst P128,K can be attacked with about an approximate time complexity of 279.6. For the key-alternating cipher, a 6-round AES and a 10-round PRESENT can be attacked with approximate time complexities of 251.7 and 297.4, respectively. For the Feistel structure, a 12-round CLEFIA can be attacked with approximate time complexities of 287.5.

  • An Accurate Indoor-Localization Scheme with NLOS Detection and Elimination Exploiting Stochastic Characteristics

    Manato HORIBA  Eiji OKAMOTO  Toshiko SHINOHARA  Katsuhiko MATSUMURA  

     
    PAPER

      Vol:
    E98-B No:9
      Page(s):
    1758-1767

    In indoor localization using sensor networks, performance improvements are required for non-line-of-sight (NLOS) environments in which the estimation error is high. NLOS mitigation schemes involve the detection and elimination of the NLOS measurements. The iterative minimum residual (IMR) scheme, which is often applied to the localization scheme using the time of arrival (TOA), is commonly employed for this purpose. The IMR scheme is a low-complexity scheme and its NLOS detection performance is relatively high. However, when there are many NLOS nodes in a sensor field, the NLOS detection error of the IMR scheme increases and the estimation accuracy deteriorates. Therefore, we propose a new scheme that exploits coarse NLOS detection based on stochastic characteristics prior to the application of the IMR scheme to improve the localization accuracy. Improved performances were confirmed in two NLOS channel models by performing numerical simulations.

  • High-Quality Recovery of Non-Sparse Signals from Compressed Sensing — Beyond l1 Norm Minimization —

    Akira HIRABAYASHI  Norihito INAMURO  Aiko NISHIYAMA  Kazushi MIMURA  

     
    PAPER

      Vol:
    E98-A No:9
      Page(s):
    1880-1887

    We propose a novel algorithm for the recovery of non-sparse, but compressible signals from linear undersampled measurements. The algorithm proposed in this paper consists of two steps. The first step recovers the signal by the l1-norm minimization. Then, the second step decomposes the l1 reconstruction into major and minor components. By using the major components, measurements for the minor components of the target signal are estimated. The minor components are further estimated using the estimated measurements exploiting a maximum a posterior (MAP) estimation, which leads to a ridge regression with the regularization parameter determined using the error bound for the estimated measurements. After a slight modification to the major components, the final estimate is obtained by combining the two estimates. Computational cost of the proposed algorithm is mostly the same as the l1-nom minimization. Simulation results for one-dimensional computer generated signals show that the proposed algorithm gives 11.8% better results on average than the l1-norm minimization and the lasso estimator. Simulations using standard images also show that the proposed algorithm outperforms those conventional methods.

  • Cooperative Communication Using the DF Protocol in the Hierarchical Modulation

    Sung-Bok CHOI  Eui-Hak LEE  Jung-In BAIK  Young-Hwan YOU  Hyoung-Kyu SONG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E98-A No:9
      Page(s):
    1990-1994

    To improve the BER performance of the conventional cooperative communication, this letter proposes an efficient method for the reliability, and it uses hierarchical modulation that has both the high priority (HP) layer and the low priority (LP) layer. To compensate more reliable transmission, the proposed method uses the error correction capability of Reed-Solomon (RS) codes additionally. The simulation results show that the proposed method can transmit data more reliably than the basic RS coded decode-and-forward (DF) method.

  • Reduced Complexity Belief Propagation Decoding Algorithm for Polar Codes Based on the Principle of Equal Spacing

    Yinfang HONG  Hui LI  Wenping MA  Xinmei WANG  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E98-B No:9
      Page(s):
    1824-1831

    In the log-likelihood ratio (LLR) domain, the belief propagation (BP) decoding algorithm for polar codes incurs high computation complexity due to the computation of the hyperbolic functions in the node update rules. In this paper, we propose a linear approximation method based on the principle of equal spacing to simplify the hyperbolic functions in the BP decoding algorithm. Our method replaces the computation of hyperbolic functions with addition and multiplication operations in the node update rules. Simulation results show that the performance of the modified BP decoding algorithm is almost the same as the original BP decoding algorithm in the low Signal to Noise Ratio (SNR) region, and in the high SNR region the performance of our method is slightly worse. The modified BP decoding algorithm is only implemented with addition and multiplication operations, which greatly reduces computation complexity, and simplifies hardware implementation.

  • RTT Estimation with Sampled Flow Data

    Qi SU  Jian GONG  Xiaoyan HU  

     
    PAPER-Network Management/Operation

      Vol:
    E98-B No:9
      Page(s):
    1848-1857

    Round-trip time (RTT) is an important performance metric. Traditional RTT estimation methods usually depend on the cooperation of other networks and particular active or passive measurement platforms, whose global deployments are costly and difficult. Thus a new RTT estimation algorithm, ME algorithm, is introduced. It can estimate the RTT of two hosts communicating through border routers by using TCP CUBIC bulk flow data from those routhers without the use of extra facilities, which makes the RTT estimation in large-scale high-speed networks more effective. In addition, a simpler and more accurate algorithm — AE algorithm — is presented and used when the link has large bandwidth and low packet loss rate. The two proposed algorithms suit sampled flow data because only duration and total packet number of a TCP CUBIC bulk flow are inputs to their calculations. Experimental results show that both algorithms work excellently in real situations. Moreover, they have the potential to be adapted to other TCP versions with slight modification as their basic idea is independent of the TCP congestion control mechanism.

  • Uniqueness Theorem of Complex-Valued Neural Networks with Polar-Represented Activation Function

    Masaki KOBAYASHI  

     
    PAPER-Nonlinear Problems

      Vol:
    E98-A No:9
      Page(s):
    1937-1943

    Several models of feed-forward complex-valued neural networks have been proposed, and those with split and polar-represented activation functions have been mainly studied. Neural networks with split activation functions are relatively easy to analyze, but complex-valued neural networks with polar-represented functions have many applications but are difficult to analyze. In previous research, Nitta proved the uniqueness theorem of complex-valued neural networks with split activation functions. Subsequently, he studied their critical points, which caused plateaus and local minima in their learning processes. Thus, the uniqueness theorem is closely related to the learning process. In the present work, we first define three types of reducibility for feed-forward complex-valued neural networks with polar-represented activation functions and prove that we can easily transform reducible complex-valued neural networks into irreducible ones. We then prove the uniqueness theorem of complex-valued neural networks with polar-represented activation functions.

  • A Local Program Insertion Scheme with a Rotate-and-Forward Strategy for Video Broadcasting

    Guo LI  Feng-Kui GONG  Na YANG  Yong WANG  Mohamed A. FARAH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:9
      Page(s):
    1882-1887

    A local program insertion (LPI) scheme for video broadcasting systems is proposed by using a novel rotate-and-forward strategy, which can be widely used when a local TV tower (LT) wants to insert its own TV signals into the signals from the main TV tower (MT) without any additional resources. In the proposed LPI scheme, the bit stream of MT is firstly modulated and transmitted through coordinated constellation mapping, Alamouti encoding and OFDM modulation. Then, the LT receives the MT signals and demodulates them into constellation symbols. Finally, the bit stream of LT is mapped as “rotate bit” to rotate the demodulated MT symbols and forward to the users. We show that our proposed LPI scheme does not require extra time or frequency resources and it is also a complexity-reduced scheme for the local TV tower (LT) since bit-level decoding is not required at the LT. In addition, it can increase the network exchanging capacity in term of bits per channel use (bpcu).

4161-4180hit(18690hit)