The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

9301-9320hit(18690hit)

  • Fundamental Consideration on Distance Estimation Using Acoustical Standing Wave

    Noboru NAKASAKO  Tetsuji UEBO  Atsushi MORI  Norimitsu OHMATA  

     
    LETTER-Engineering Acoustics

      Vol:
    E91-A No:4
      Page(s):
    1218-1221

    In the research field of microwave radar, a range finding method based on standing wave is known to be effective for measuring short distances. In this paper, we focus our attention on audible sound and fundamentally examine the distance estimation method in which acoustical standing wave is used.

  • Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization

    Ken TANAKA  Hiromichi TOMEBA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1055-1062

    Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of orthogonal frequency division multiplexing (OFDM) and time-domain spreading, while multi-carrier code division multiple access (MC-CDMA) is a combination of OFDM and frequency-domain spreading. In MC-CDMA, a good bit error rate (BER) performance can be achieved by using frequency-domain equalization (FDE), since the frequency diversity gain is obtained. On the other hand, the conventional orthogonal MC DS-CDMA fails to achieve any frequency diversity gain. In this paper, we propose a new orthogonal MC DS-CDMA that can obtain the frequency diversity gain by applying FDE. The conditional BER analysis is presented. The theoretical average BER performance in a frequency-selective Rayleigh fading channel is evaluated by the Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation of the orthogonal MC DS-CDMA signal transmission.

  • Studies on an Iterative Frequency Domain Channel Estimation Technique for MIMO-UWB Communications

    Masaki TAKANASHI  Yasutaka OGAWA  Toshihiko NISHIMURA  Takeo OHGANE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1084-1094

    MIMO (Multiple-Input Multiple-Output) technologies have attracted much interest for high-rate and high-capacity wireless communications. MIMO technologies under frequency-selective fading environments (wideband MIMO technologies) have also been studied. A wideband MIMO system is affected by ISI (Inter Symbol Interference) and CCI (Co-Channel Interference). Hence, we need a MIMO signal detection technique that simultaneously suppresses ISI and CCI. The OFDM system and SC-FDE (Single Carrier-Frequency Domain Equalization) techniques are often used for suppressing ISI. By employing these techniques with the ZF (Zero Forcing) or the MMSE (Minimum Mean Square Error) spatial filtering technique, we can cancel both ISI and CCI. To use ZF or MMSE, we need channel state information for calculating the receive weights. Although an LS (Least Square) channel estimation technique has been proposed for MIMO-OFDM systems, it needs a large estimation matrix at the receiver side to obtain sufficient estimation performance in heavy multipath environments. However, the use of a large matrix increases computational complexity and the circuit size. We use frequency domain channel estimation to solve these problems and propose an iterative method for achieving better estimation performance. In this paper, we assume the use of a MIMO-UWB system that employs a UWB-IR (Ultra-Wideband Impulse Radio) scheme with the FDE technique as the wideband wireless transmission scheme for heavy multipath environments, and we evaluate the iterative frequency domain channel estimation through computer simulations and computational complexity calculations.

  • MIMO-OFDM MAP Receiver with Spatial-Temporal Filters Employing Decision-Directed Recursive Eigenvalue Decomposition Parameter Estimation

    Fan LISHENG  Kazuhiko FUKAWA  Hiroshi SUZUKI  Satoshi SUYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1112-1121

    This paper proposes a new parameter estimation method for the MIMO-OFDM MAP receiver with spatial-temporal filters. The proposed method employs eigenvalue decomposition (EVD) so as to attain precise estimates especially under interference-limited conditions in MIMO-OFDM mobile communications. Recursive EVD is introduced to reduce the computational complexity compared to the nonrecursive EVD. The spatial-temporal prewhitening is placed prior to FFT because this arrangement is superior to that of conventional prewhitening posterior to FFT in accuracy of the parameter estimation. In order to improve tracking capability to fast fading, the proposed scheme applies a decision-directed algorithm to the parameter estimation by using log-likelihood ratios of coded bits. Computer simulations demonstrate that the proposed scheme can track fast fading and reduce the complexity to 18 percents of the conventional one, and that the spatial-temporal filtering prior to FFT outperforms the conventional one posterior to FFT.

  • On the Achievable Efficiency-Fairness Tradeoff in Utility-Optimal MAC Protocols

    Jang-Won LEE  Mung CHIANG  A. Robert CALDERBANK  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E91-B No:4
      Page(s):
    1231-1234

    We use the network utility maximization (NUM) framework to create an efficient and fair medium access control (MAC) protocol for wireless networks. By adjusting the parameters in the utility objective functions of NUM problems, we control the tradeoff between efficiency and fairness of radio resource allocation through a rigorous and systematic design. In this paper, we propose a scheduling-based MAC protocol. Since it provides an upper-bound on the achievable performance, it establishes the optimality benchmarks for comparison with other algorithms in related work.

  • A 41 mW VGA@30 fps Quadtree Video Encoder for Video Surveillance Systems

    Qin LIU  Seiichiro HIRATSUKA  Kazunori SHIMIZU  Shinsuke USHIKI  Satoshi GOTO  Takeshi IKENAGA  

     
    PAPER

      Vol:
    E91-C No:4
      Page(s):
    449-456

    Video surveillance systems have a huge market, as indicated by the number of installed cameras, particularly for low-power systems. In this paper, we propose a low-power quadtree video encoder for video surveillance systems. It features a low-complexity motion estimation algorithm, an application-specific ME-MC processor, a dedicated quadtree encoder engine and a processor control-based clock-gating technique. A chip capable of encoding 30 fps VGA (640480) at 80 MHz is fabricated using 0.18 µm CMOS technology. A total of 153 K gates with 558 kbits SRAM have been integrated into a 5.0 mm3.5 mm die. The power consumption is 40.87 mW at 80 MHz for VGA at 30 fps and 1.97 mW at 3.3 MHz for QCIF at 15 fps.

  • Wideband DOA Estimation Using a Frequency-Domain Frequency-Invariant Beamformer and a Matrix Pencil Method

    Jinhwan KOH  Weiwei ZHOU  Taekon KIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:4
      Page(s):
    1235-1238

    We describe an extension of the wideband direction-of-arrival (DOA) estimation method using a frequency-domain frequency-invariant beamformer (FDFIB). The technique uses the Matrix Pencil Method (MPM) instead of conventional methods based on the eigen-structure of the input covariance matrix. MPM offers excellent resolution compared to conventional methods.

  • Design Method for a Low-Profile Dual-Shaped Reflector Antenna with an Elliptical Aperture by the Suppression of Undesired Scattering

    Yoshio INASAWA  Shinji KURODA  Kenji KUSAKABE  Izuru NAITO  Yoshihiko KONISHI  Shigeru MAKINO  Makio TSUCHIYA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:4
      Page(s):
    615-624

    A design method is proposed for a low-profile dual-shaped reflector antenna for the mobile satellite communications. The antenna is required to be low-profile because of mount restrictions. However, reduction of its height generally causes degradation of antenna performance. Firstly, an initial low-profile reflector antenna with an elliptical aperture is designed by using Geometrical Optics (GO) shaping. Then a Physical Optics (PO) shaping technique is applied to optimize the gain and sidelobes including mitigation of undesired scattering. The developed design method provides highly accurate design procedure for electrically small reflector antennas. Fabrication and measurement of a prototype antenna support the theory.

  • Investigation of Electromagnetic Characteristics for Mobile Handsets with Monopole-Type and Inverted-F Wire Antennas

    Jeong I. KIM  Dongweon YOON  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:4
      Page(s):
    1239-1242

    Comparison of the electromagnetic characteristics of a monopole-type wire antenna (MTWA) and an inverted-F wire antenna (IFWA) is performed based on numerical and experimental results. Radiation characteristics, when the handset model is located in the vicinity of a head phantom or in free space, are also investigated. The gain of 8.27 dBi is achieved at 3.4 GHz for the MTWA with the head phantom.

  • Novel Register Sharing in Datapath for Structural Robustness against Delay Variation

    Keisuke INOUE  Mineo KANEKO  Tsuyoshi IWAGAKI  

     
    PAPER

      Vol:
    E91-A No:4
      Page(s):
    1044-1053

    As the feature size of VLSI becomes smaller, delay variations become a serious problem in VLSI. In this paper, we propose a novel class of robustness for a datapath against delay variations, which is named structural robustness against delay variation (SRV), and propose sufficient conditions for a datapath to have SRV. A resultant circuit designed under these conditions has a larger timing margin to delay variations than previous designs without sacrificing effective computation time. In addition, under any degree of delay variations, we can always find an available clock frequency for a datapath having SRV property to operate correctly, which could be a preferable characteristic in IP-based design.

  • Improving Automatic Text Classification by Integrated Feature Analysis

    Lazaro S.P. BUSAGALA  Wataru OHYAMA  Tetsushi WAKABAYASHI  Fumitaka KIMURA  

     
    PAPER-Pattern Recognition

      Vol:
    E91-D No:4
      Page(s):
    1101-1109

    Feature transformation in automatic text classification (ATC) can lead to better classification performance. Furthermore dimensionality reduction is important in ATC. Hence, feature transformation and dimensionality reduction are performed to obtain lower computational costs with improved classification performance. However, feature transformation and dimension reduction techniques have been conventionally considered in isolation. In such cases classification performance can be lower than when integrated. Therefore, we propose an integrated feature analysis approach which improves the classification performance at lower dimensionality. Moreover, we propose a multiple feature integration technique which also improves classification effectiveness.

  • Rate Adaptation Based on Collision Probability for IEEE 802.11 WLANs

    Taejoon KIM  Jong-Tae LIM  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E91-B No:4
      Page(s):
    1227-1230

    Nowadays IEEE 802.11 wireless local area networks (WLANs) support multiple transmission rates. To achieve the best performance, transmitting stations adopt the various forms of automatic rate fallback (ARF). However, ARF suffers from severe performance degradation as the number of transmitting stations increases. In this paper, we propose a new rate adaptation scheme which adjusts the ARF's up/down threshold according to the channel contention level. Simulation result shows that the proposed scheme achieves fairly good performance compared with the existing schemes.

  • Clear Channel Assessment in Ultra-Wideband Sensor Networks

    Bin ZHEN  Huan-Bang LI  Ryuji KOHNO  

     
    PAPER-Network

      Vol:
    E91-B No:4
      Page(s):
    998-1005

    Impulse ultra-wideband (UWB) is an attractive technology for large ad hoc sensor networks due to its precise ranging capacity, multi-path fading robustness and low radiation power. The transient and carrier-less nature of low radiation pulse and harsh multipath channel condition makes it cumbersome to implement carrier sensing. We proposed clear channel assessment (CCA) based on preamble-assisted modulation (PAM) for UWB sensor networks. Preamble symbols are periodically inserted into the frame payload in the time domain to serve as regular feature for reliable CCA. We simulated the CCA performance in the multipath UWB channel model developed by IEEE 802.15.4a. PAM and CCA configurations were optimized for the distributed carrier sense multiple access protocol. PAM was accepted by 802.15.4a group as an optional feature. Furthermore, the multiplexed preamble symbols can be exploited for channel estimation to improve communication and ranging.

  • A Behavioral Synthesis Method with Special Functional Units

    Tsuyoshi SADAKATA  Yusuke MATSUNAGA  

     
    PAPER

      Vol:
    E91-A No:4
      Page(s):
    1084-1091

    This paper proposes a novel Behavioral Synthesis method that tries to reduce the number of clock cycles under clock cycle time and total functional unit area constraints using special functional units efficiently. Special functional units are designed to have shorter delay and/or smaller area than the cascaded basic functional units for specific operation patterns. For example, a Multiply-Accumulator is one of them. However, special functional units may have less flexibility for resource sharing because intermediate operation results may not be able to be obtained. Hence, almost all conventional methods can not handle special functional units efficiently for the reduction of clock cycles in practical time, especially under a tight area constraint. The proposed method makes it possible to solve module selection, scheduling, and functional unit allocation problems using special functional units in practical time with some heuristics. Experimental results show that the proposed method has achieved maximally 33% reduction of the cycles for a small application and 14% reduction for a realistic application in practical time.

  • Hardware Neural Network for a Visual Inspection System

    Seungwoo CHUN  Yoshihiro HAYAKAWA  Koji NAKAJIMA  

     
    PAPER

      Vol:
    E91-A No:4
      Page(s):
    935-942

    The visual inspection of defects in products is heavily dependent on human experience and instinct. In this situation, it is difficult to reduce the production costs and to shorten the inspection time and hence the total process time. Consequently people involved in this area desire an automatic inspection system. In this paper, we propose a hardware neural network, which is expected to provide high-speed operation for automatic inspection of products. Since neural networks can learn, this is a suitable method for self-adjustment of criteria for classification. To achieve high-speed operation, we use parallel and pipelining techniques. Furthermore, we use a piecewise linear function instead of a conventional activation function in order to save hardware resources. Consequently, our proposed hardware neural network achieved 6GCPS and 2GCUPS, which in our test sample proved to be sufficiently fast.

  • Statistical Corner Conditions of Interconnect Delay (Corner LPE Specifications)

    Kenta YAMADA  Noriaki ODA  

     
    PAPER

      Vol:
    E91-C No:4
      Page(s):
    562-570

    Timing closure in LSI design is becoming more and more difficult. But the conventional interconnect RC extraction method has over-margins caused by its corner conditions settings. In this paper, statistical corner conditions using the independence of variations between process parameters and between interconnect layers are proposed, with examinations using the measurement data. As a result of the method, the fast-to-slow guardband decreases by half in average, compared to the conventional method. The proposed method is ready for implementation to LPE tools.

  • Power and Rate Adaptation Based on Imperfect Channel Estimation over MIMO Fading Channels

    Alireza KOBRAVI  Mohammad SHIKH-BAHAEI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1063-1067

    We derive the optimum power and rate adaptation for maximizing the spectral efficiency of Multilevel Quadrature Amplitude Modulation (MQAM) over Multiple-Input Multiple-Output (MIMO) fading channels based on imperfect channel estimation. We use Pilot Symbol Assisted Modulation (PSAM)-based Minimum Mean Square Error (MMSE) channel estimator, and show that the optimum power adaptation on each sub-channel is a generalization of water-filling. We also show that the conventional water-filling (with bias) strategy for power adaptation is a suboptimum solution of the general optimization problem and it tends to the optimal solution as the correlation coefficients between eigenvalues of the true channel matrix and its estimate tend to one.

  • Iterative Decoding Algorithm in the Adaptive Modulation and Coding System with MIMO Schemes

    Sangjin RYOO  Kyunghwan LEE  Cheolwoo YOU  Intae HWANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1180-1184

    In this paper, we propose and analyze the adaptive modulation system with optimal Turbo Coded V-BLAST (Vertical-Bell-lab Layered Space-Time) technique that adopts extrinsic information from a MAP (Maximum A Posteriori) decoder with iterative decoding as a priori probability in two decoding procedures of V-BLAST scheme; the ordering and the slicing. Also, we consider the AMC (Adaptive Modulation and Coding) using the conventional Turbo Coded V-BLAST technique that simply combines the V-BLAST scheme with the turbo coding scheme. And we compare the proposed iterative decoding algorithm to a conventional V-BLAST decoding algorithm and a ML (Maximum Likelihood) decoding algorithm. In this analysis, the MIMO (Multiple Input Multiple Output) and the STD (Selection Transmit Diversity) schemes are assumed to be parts of the system for performance improvement. Results indicate that the proposed systems achieve better throughput performance than the conventional systems over the whole SNR (Signal to Noise Ratio) range. In terms of transmission rate performance, the suggested system is close in proximity to the conventional system using the ML decoding algorithm. In addition, the simulation result shows that the maximum throughput improvement in each MIMO scheme is respectively about 350 kbps, 460 kbps, and 740 kbps. It is suggested that the effect of the proposed iterative decoding algorithm accordingly gets higher as the number of system antenna increases.

  • Performance Models for MPI Collective Communications with Network Contention

    Hyacinthe NZIGOU MAMADOU  Takeshi NANRI  Kazuaki MURAKAMI  

     
    PAPER-Network

      Vol:
    E91-B No:4
      Page(s):
    1015-1024

    The paper presents a novel approach to estimate the performance of MPI collective communications. Our objective is to help researchers to make appropriate decisions on their message-passing applications. For each collective communication, we attempt to apply LogGP and P-LogP standard point-to-point models. The resulted models are compared with the empirical data in order to identify the most suitable for performance characterization of collective operations. For the communications on large clusters with large size messages, the network contention problem can significantly affect the performance. Hence, to reduce the relative gap between the prediction and the measured runtime, the contention issue is also modeled, by a queuing theory analysis method, and taken in account with the total performance estimation. The experiments performed on a cluster which consists of 64 processors interconnected by Gigabit Ethernet network show encouraging results. For any collective operation, given a number of processors and a range of message sizes, there is at least one model that predicts the performance precisely. We could achieve a gap between the predicted and the measured run-time around 15%. Thus, by handling the contention problem, we could reduce around 80% of the relative gap.

  • An Enhanced Distortion Measure Based VBR for Waveform Interpolative Speech Coders

    Heesik YANG  Sangbae JEONG  Minsoo HAHN  

     
    LETTER-Speech and Hearing

      Vol:
    E91-A No:4
      Page(s):
    1222-1225

    In our previous study, a distortion measure based variable bit rate (DM-VBR) scheme in waveform interpolation (WI) coders was proposed. In this paper, the repetition method is proposed to estimate non-transmitted parameters instead of the extrapolation method. For the further reduction of slowly evolving waveform (SEW) bit rates, the dimensions of the past parameters, which are different from those of the current parameters, are converted to match the dimension of the current ones. Distortions between interpolated sub-frames and original sub-frames are measured for the reduction of the SEW parameters. And the usefulness of several other distortion measures is also investigated instead of the simple log spectral distortion. Experimental results show that the coder adopting the new schemes offers above 41% bit rate reduction with almost unnoticeable output speech degradation.

9301-9320hit(18690hit)