The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

961-980hit(18690hit)

  • An Analysis of Local BTI Variation with Ring-Oscillator in Advanced Processes and Its Impact on Logic Circuit and SRAM

    Mitsuhiko IGARASHI  Yuuki UCHIDA  Yoshio TAKAZAWA  Makoto YABUUCHI  Yasumasa TSUKAMOTO  Koji SHIBUTANI  Kazutoshi KOBAYASHI  

     
    PAPER

      Pubricized:
    2021/05/25
      Vol:
    E104-A No:11
      Page(s):
    1536-1545

    In this paper, we present an analysis of local variability of bias temperature instability (BTI) by measuring Ring-Oscillators (RO) on various processes and its impact on logic circuit and SRAM. The evaluation results based on measuring ROs of a test elementary group (TEG) fabricated in 7nm Fin Field Effect Transistor (FinFET) process, 16/14nm generation FinFET processes and a 28nm planer process show that the standard deviations of Negative BTI (NBTI) Vth degradation (σ(ΔVthp)) are proportional to the square root of the mean value (µ(ΔVthp)) at any stress time, Vth flavors and various recovery conditions. While the amount of local BTI variation depends on the gate length, width and number of fins, the amount of local BTI variation at the 7nm FinFET process is slightly larger than other processes. Based on these measurement results, we present an analysis result of its impact on logic circuit considering measured Vth dependency on global NBTI in the 7nm FinFET process. We also analyse its impact on SRAM minimum operation voltage (Vmin) of static noise margin (SNM) based on sensitivity analysis and shows non-negligible Vmin degradation caused by local NBTI.

  • Joint Wireless and Computational Resource Allocation Based on Hierarchical Game for Mobile Edge Computing

    Weiwei XIA  Zhuorui LAN  Lianfeng SHEN  

     
    PAPER-Network

      Pubricized:
    2021/05/14
      Vol:
    E104-B No:11
      Page(s):
    1395-1407

    In this paper, we propose a hierarchical Stackelberg game based resource allocation algorithm (HGRAA) to jointly allocate the wireless and computational resources of a mobile edge computing (MEC) system. The proposed HGRAA is composed of two levels: the lower-level evolutionary game (LEG) minimizes the cost of mobile terminals (MTs), and the upper-level exact potential game (UEPG) maximizes the utility of MEC servers. At the lower-level, the MTs are divided into delay-sensitive MTs (DSMTs) and non-delay-sensitive MTs (NDSMTs) according to their different quality of service (QoS) requirements. The competition among DSMTs and NDSMTs in different service areas to share the limited available wireless and computational resources is formulated as a dynamic evolutionary game. The dynamic replicator is applied to obtain the evolutionary equilibrium so as to minimize the costs imposed on MTs. At the upper level, the exact potential game is formulated to solve the resource sharing problem among MEC servers and the resource sharing problem is transferred to nonlinear complementarity. The existence of Nash equilibrium (NE) is proved and is obtained through the Karush-Kuhn-Tucker (KKT) condition. Simulations illustrate that substantial performance improvements such as average utility and the resource utilization of MEC servers can be achieved by applying the proposed HGRAA. Moreover, the cost of MTs is significantly lower than other existing algorithms with the increasing size of input data, and the QoS requirements of different kinds of MTs are well guaranteed in terms of average delay and transmission data rate.

  • Faster SET Operation in Phase Change Memory with Initialization Open Access

    Yuchan WANG  Suzhen YUAN  Wenxia ZHANG  Yuhan WANG  

     
    PAPER-Electronic Materials

      Pubricized:
    2021/04/14
      Vol:
    E104-C No:11
      Page(s):
    651-655

    In conclusion, an initialization method has been introduced and studied to improve the SET speed in PCM. Before experiment verification, a two-dimensional finite analysis is used, and the results illustrate the proposed method is feasible to improve SET speed. Next, the R-I performances of the discrete PCM device and the resistance distributions of a 64 M bits PCM test chip with and without the initialization have been studied and analyzed, which confirms that the writing speed has been greatly improved. At the same time, the resistance distribution for the repeated initialization operations suggest that a large number of PCM cells have been successfully changed to be in an intermediate state, which is thought that only a shorter current pulse can make the cells SET successfully in this case. Compared the transmission electron microscope (TEM) images before and after initialization, it is found that there are some small grains appeared after initialization, which indicates that the nucleation process of GST has been carried out, and only needs to provide energy for grain growth later.

  • Analysis and Acceleration of the Quadratic Knapsack Problem on an Ising Machine Open Access

    Matthieu PARIZY  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-A No:11
      Page(s):
    1526-1535

    The binary quadratic knapsack problem (QKP) aims at optimizing a quadratic cost function within a single knapsack. Its applications and difficulty make it appealing for various industrial fields. In this paper we present an efficient strategy to solve the problem by modeling it as an Ising spin model using an Ising machine to search for its ground state which translates to the optimal solution of the problem. Secondly, in order to facilitate the search, we propose a novel technique to visualize the landscape of the search and demonstrate how difficult it is to solve QKP on an Ising machine. Finally, we propose two software solution improvement algorithms to efficiently solve QKP on an Ising machine.

  • Flexible Bayesian Inference by Weight Transfer for Robust Deep Neural Networks

    Thi Thu Thao KHONG  Takashi NAKADA  Yasuhiko NAKASHIMA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/07/28
      Vol:
    E104-D No:11
      Page(s):
    1981-1991

    Adversarial attacks are viewed as a danger to Deep Neural Networks (DNNs), which reveal a weakness of deep learning models in security-critical applications. Recent findings have been presented adversarial training as an outstanding defense method against adversaries. Nonetheless, adversarial training is a challenge with respect to big datasets and large networks. It is believed that, unless making DNN architectures larger, DNNs would be hard to strengthen the robustness to adversarial examples. In order to avoid iteratively adversarial training, our algorithm is Bayes without Bayesian Learning (BwoBL) that performs the ensemble inference to improve the robustness. As an application of transfer learning, we use learned parameters of pretrained DNNs to build Bayesian Neural Networks (BNNs) and focus on Bayesian inference without costing Bayesian learning. In comparison with no adversarial training, our method is more robust than activation functions designed to enhance adversarial robustness. Moreover, BwoBL can easily integrate into any pretrained DNN, not only Convolutional Neural Networks (CNNs) but also other DNNs, such as Self-Attention Networks (SANs) that outperform convolutional counterparts. BwoBL is also convenient to apply to scaling networks, e.g., ResNet and EfficientNet, with better performance. Especially, our algorithm employs a variety of DNN architectures to construct BNNs against a diversity of adversarial attacks on a large-scale dataset. In particular, under l∞ norm PGD attack of pixel perturbation ε=4/255 with 100 iterations on ImageNet, our proposal in ResNets, SANs, and EfficientNets increase by 58.18% top-5 accuracy on average, which are combined with naturally pretrained ResNets, SANs, and EfficientNets. This enhancement is 62.26% on average below l2 norm C&W attack. The combination of our proposed method with pretrained EfficientNets on both natural and adversarial images (EfficientNet-ADV) drastically boosts the robustness resisting PGD and C&W attacks without additional training. Our EfficientNet-ADV-B7 achieves the cutting-edge top-5 accuracy, which is 92.14% and 94.20% on adversarial ImageNet generated by powerful PGD and C&W attacks, respectively.

  • Improving the Recognition Accuracy of a Sound Communication System Designed with a Neural Network

    Kosei OZEKI  Naofumi AOKI  Saki ANAZAWA  Yoshinori DOBASHI  Kenichi IKEDA  Hiroshi YASUDA  

     
    PAPER-Engineering Acoustics

      Pubricized:
    2021/05/06
      Vol:
    E104-A No:11
      Page(s):
    1577-1584

    This study has developed a system that performs data communications using high frequency bands of sound signals. Unlike radio communication systems using advanced wireless devices, it only requires the legacy devices such as microphones and speakers employed in ordinary telephony communication systems. In this study, we have investigated the possibility of a machine learning approach to improve the recognition accuracy identifying binary symbols exchanged through sound media. This paper describes some experimental results evaluating the performance of our proposed technique employing a neural network as its classifier of binary symbols. The experimental results indicate that the proposed technique may have a certain appropriateness for designing an optimal classifier for the symbol identification task.

  • Deadlock-Free Symbolic Smith Controllers Based on Prediction for Nondeterministic Systems Open Access

    Masashi MIZOGUCHI  Toshimitsu USHIO  

     
    PAPER-Systems and Control

      Pubricized:
    2021/05/14
      Vol:
    E104-A No:11
      Page(s):
    1593-1602

    The Smith method has been used to control physical plants with dead time components, where plant states after the dead time is elapsed are predicted and a control input is determined based on the predicted states. We extend the method to the symbolic control and design a symbolic Smith controller to deal with a nondeterministic embedded system. Due to the nondeterministic transitions, the proposed controller computes all reachable plant states after the dead time is elapsed and determines a control input that is suitable for all of them in terms of a given control specification. The essence of the Smith method is that the effects of the dead time are suppressed by the prediction, however, which is not always guaranteed for nondeterministic systems because there may exist no control input that is suitable for all predicted states. Thus, in this paper, we discuss the existence of a deadlock-free symbolic Smith controller. If it exists, it is guaranteed that the effects of the dead time can be suppressed and that the controller can always issue the control input for any reachable state of the plant. If it does not exist, it is proved that the deviation from the control specification is essentially inevitable.

  • Multi-Rate Switched Pinning Control for Velocity Control of Vehicle Platoons Open Access

    Takuma WAKASA  Kenji SAWADA  

     
    PAPER

      Pubricized:
    2021/05/12
      Vol:
    E104-A No:11
      Page(s):
    1461-1469

    This paper proposes a switched pinning control method with a multi-rating mechanism for vehicle platoons. The platoons are expressed as multi-agent systems consisting of mass-damper systems in which pinning agents receive target velocities from external devices (ex. intelligent traffic signals). We construct model predictive control (MPC) algorithm that switches pinning agents via mixed-integer quadratic programmings (MIQP) problems. The optimization rate is determined according to the convergence rate to the target velocities and the inter-vehicular distances. This multi-rating mechanism can reduce the computational load caused by iterative calculation. Numerical results demonstrate that our method has a reduction effect on the string instability by selecting the pinning agents to minimize errors of the inter-vehicular distances to the target distances.

  • Solving 3D Container Loading Problems Using Physics Simulation for Genetic Algorithm Evaluation

    Shuhei NISHIYAMA  Chonho LEE  Tomohiro MASHITA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/08/06
      Vol:
    E104-D No:11
      Page(s):
    1913-1922

    In this work, an optimization method for the 3D container loading problem with multiple constraints is proposed. The method consists of a genetic algorithm to generate an arrangement of cargo and a fitness evaluation using a physics simulation. The fitness function considers not only the maximization of the container density and fitness value but also several different constraints such as weight, stack-ability, fragility, and orientation of cargo pieces. We employed a container shaking simulation for the fitness evaluation to include constraint effects during loading and transportation. We verified that the proposed method successfully provides the optimal cargo arrangement for small-scale problems with about 10 pieces of cargo.

  • Constrained Design of FIR Filters with Sparse Coefficients

    Tatsuki ITASAKA  Ryo MATSUOKA  Masahiro OKUDA  

     
    PAPER

      Pubricized:
    2021/05/13
      Vol:
    E104-A No:11
      Page(s):
    1499-1508

    We propose an algorithm for the constrained design of FIR filters with sparse coefficients. In general filter design approaches, as the length of the filter increases, the number of multipliers used to construct the filter increases. This is a serious problem, especially in two-dimensional FIR filter designs. The FIR filter coefficients designed by the least-squares method with peak error constraint are optimal in the sense of least-squares within a given order, but not necessarily optimal in terms of constructing a filter that meets the design specification under the constraints on the number of coefficients. That is, a higher-order filter with several zero coefficients can construct a filter that meets the specification with a smaller number of multipliers. We propose a two-step approach to design constrained sparse FIR filters. Our method minimizes the number of non-zero coefficients while the frequency response of the filter that meets the design specification. It achieves better performance in terms of peak error than conventional constrained least-squares designs with the same or higher number of multipliers in both one-dimensional and two-dimensional filter designs.

  • An Anomalous Behavior Detection Method Utilizing Extracted Application-Specific Power Behaviors

    Kazunari TAKASAKI  Ryoichi KIDA  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-A No:11
      Page(s):
    1555-1565

    With the widespread use of Internet of Things (IoT) devices in recent years, we utilize a variety of hardware devices in our daily life. On the other hand, hardware security issues are emerging. Power analysis is one of the methods to detect anomalous behaviors, but it is hard to apply it to IoT devices where an operating system and various software programs are running. In this paper, we propose an anomalous behavior detection method for an IoT device by extracting application-specific power behaviors. First, we measure power consumption of an IoT device, and obtain the power waveform. Next, we extract an application-specific power waveform by eliminating a steady factor from the obtained power waveform. Finally, we extract feature values from the application-specific power waveform and detect an anomalous behavior by utilizing the local outlier factor (LOF) method. We conduct two experiments to show how our proposed method works: one runs three application programs and an anomalous application program randomly and the other runs three application programs in series and an anomalous application program very rarely. Application programs on both experiments are implemented on a single board computer. The experimental results demonstrate that the proposed method successfully detects anomalous behaviors by extracting application-specific power behaviors, while the existing approaches cannot.

  • A Simple and Compact Planar Balun with Slit Ground

    Ryosuke SUGA  Kazuto OSHIMA  Tomoki UWANO  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/04/09
      Vol:
    E104-C No:11
      Page(s):
    667-671

    In this paper, a planar balun having simple and compact features with slit ground was proposed. The operating frequency can be designed by the length and position of the defected ground slits. The 20 dB bandwidth of the common mode rejection ratio of the measuring balun was over 90%.

  • Smaller Residual Network for Single Image Depth Estimation

    Andi HENDRA  Yasushi KANAZAWA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/08/17
      Vol:
    E104-D No:11
      Page(s):
    1992-2001

    We propose a new framework for estimating depth information from a single image. Our framework is relatively small and straightforward by employing a two-stage architecture: a residual network and a simple decoder network. Our residual network in this paper is a remodeled of the original ResNet-50 architecture, which consists of only thirty-eight convolution layers in the residual block following by pair of two up-sampling and layers. While the simple decoder network, stack of five convolution layers, accepts the initial depth to be refined as the final output depth. During training, we monitor the loss behavior and adjust the learning rate hyperparameter in order to improve the performance. Furthermore, instead of using a single common pixel-wise loss, we also compute loss based on gradient-direction, and their structure similarity. This setting in our network can significantly reduce the number of network parameters, and simultaneously get a more accurate image depth map. The performance of our approach has been evaluated by conducting both quantitative and qualitative comparisons with several prior related methods on the publicly NYU and KITTI datasets.

  • Leakage-Resilient and Proactive Authenticated Key Exchange (LRP-AKE), Reconsidered

    SeongHan SHIN  

     
    PAPER

      Pubricized:
    2021/08/05
      Vol:
    E104-D No:11
      Page(s):
    1880-1893

    In [31], Shin et al. proposed a Leakage-Resilient and Proactive Authenticated Key Exchange (LRP-AKE) protocol for credential services which provides not only a higher level of security against leakage of stored secrets but also secrecy of private key with respect to the involving server. In this paper, we discuss a problem in the security proof of the LRP-AKE protocol, and then propose a modified LRP-AKE protocol that has a simple and effective measure to the problem. Also, we formally prove its AKE security and mutual authentication for the entire modified LRP-AKE protocol. In addition, we describe several extensions of the (modified) LRP-AKE protocol including 1) synchronization issue between the client and server's stored secrets; 2) randomized ID for the provision of client's privacy; and 3) a solution to preventing server compromise-impersonation attacks. Finally, we evaluate the performance overhead of the LRP-AKE protocol and show its test vectors. From the performance evaluation, we can confirm that the LRP-AKE protocol has almost the same efficiency as the (plain) Diffie-Hellman protocol that does not provide authentication at all.

  • Speech Paralinguistic Approach for Detecting Dementia Using Gated Convolutional Neural Network

    Mariana RODRIGUES MAKIUCHI  Tifani WARNITA  Nakamasa INOUE  Koichi SHINODA  Michitaka YOSHIMURA  Momoko KITAZAWA  Kei FUNAKI  Yoko EGUCHI  Taishiro KISHIMOTO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/08/03
      Vol:
    E104-D No:11
      Page(s):
    1930-1940

    We propose a non-invasive and cost-effective method to automatically detect dementia by utilizing solely speech audio data. We extract paralinguistic features for a short speech segment and use Gated Convolutional Neural Networks (GCNN) to classify it into dementia or healthy. We evaluate our method on the Pitt Corpus and on our own dataset, the PROMPT Database. Our method yields the accuracy of 73.1% on the Pitt Corpus using an average of 114 seconds of speech data. In the PROMPT Database, our method yields the accuracy of 74.7% using 4 seconds of speech data and it improves to 80.8% when we use all the patient's speech data. Furthermore, we evaluate our method on a three-class classification problem in which we included the Mild Cognitive Impairment (MCI) class and achieved the accuracy of 60.6% with 40 seconds of speech data.

  • Deployment and Reconfiguration for Balanced 5G Core Network Slices Open Access

    Xin LU  Xiang WANG  Lin PANG  Jiayi LIU  Qinghai YANG  Xingchen SONG  

     
    PAPER-Mobile Information Network and Personal Communications

      Pubricized:
    2021/05/21
      Vol:
    E104-A No:11
      Page(s):
    1629-1643

    Network Slicing (NS) is recognized as a key technology for the 5G network in providing tailored network services towards various types of verticals over a shared physical infrastructure. It offers the flexibility of on-demand provisioning of diverse services based on tenants' requirements in a dynamic environment. In this work, we focus on two important issues related to 5G Core slices: the deployment and the reconfiguration of 5G Core NSs. Firstly, for slice deployment, balancing the workloads of the underlying network is beneficial in mitigating resource fragmentation for accommodating the future unknown network slice requests. In this vein, we formulate a load-balancing oriented 5G Core NS deployment problem through an Integer Linear Program (ILP) formulation. Further, for slice reconfiguration, we propose a reactive strategy to accommodate a rejected NS request by reorganizing the already-deployed NSs. Typically, the NS deployment algorithm is reutilized with slacked physical resources to find out the congested part of the network, due to which the NS is rejected. Then, these congested physical nodes and links are reconfigured by migrating virtual network functions and virtual links, to re-balance the utilization of the whole physical network. To evaluate the performance of deployment and reconfiguration algorithms we proposed, extensive simulations have been conducted. The results show that our deployment algorithm performs better in resource balancing, hence achieves higher acceptance ratio by comparing to existing works. Moreover, our reconfiguration algorithm improves resource utilization by accommodating more NSs in a dynamic environment.

  • m-to-1 Mappings over Finite Fields Fq

    You GAO  Yun-Fei YAO  Lin-Zhi SHEN  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/04/28
      Vol:
    E104-A No:11
      Page(s):
    1612-1618

    Permutation polynomials over finite fields have been widely studied due to their important applications in mathematics and cryptography. In recent years, 2-to-1 mappings over finite fields were proposed to build almost perfect nonlinear functions, bent functions, and the semi-bent functions. In this paper, we generalize the 2-to-1 mappings to m-to-1 mappings, including their construction methods. Some applications of m-to-1 mappings are also discussed.

  • Signature Codes to Remove Interference Light in Synchronous Optical Code-Division Multiple Access Systems Open Access

    Tomoko K. MATSUSHIMA  Shoichiro YAMASAKI  Kyohei ONO  

     
    PAPER-Coding Theory

      Pubricized:
    2021/05/06
      Vol:
    E104-A No:11
      Page(s):
    1619-1628

    This paper proposes a new class of signature codes for synchronous optical code-division multiple access (CDMA) and describes a general method for construction of the codes. The proposed codes can be obtained from generalized modified prime sequence codes (GMPSCs) based on extension fields GF(q), where q=pm, p is a prime number, and m is a positive integer. It has been reported that optical CDMA systems using GMPSCs remove not only multi-user interference but also optical interference (e.g., background light) with a constant intensity during a slot of length q2. Recently, the authors have reported that optical CDMA systems using GMPSCs also remove optical interference with intensity varying by blocks with a length of q. The proposed codes, referred to as p-chip codes in general and chip-pair codes in particular for the case of p=2, have the property of removing interference light with an intensity varying by shorter blocks with a length of p without requiring additional equipment. The present paper also investigates the algebraic properties and applications of the proposed codes.

  • Low-Power Reconfigurable Architecture of Elliptic Curve Cryptography for IoT

    Xianghong HU  Hongmin HUANG  Xin ZHENG  Yuan LIU  Xiaoming XIONG  

     
    PAPER-Electronic Circuits

      Pubricized:
    2021/05/14
      Vol:
    E104-C No:11
      Page(s):
    643-650

    Elliptic curve cryptography (ECC), one of the asymmetric cryptography, is widely used in practical security applications, especially in the Internet of Things (IoT) applications. This paper presents a low-power reconfigurable architecture for ECC, which is capable of resisting simple power analysis attacks (SPA) and can be configured to support all of point operations and modular operations on 160/192/224/256-bit field orders over GF(p). Point multiplication (PM) is the most complex and time-consuming operation of ECC, while modular multiplication (MM) and modular division (MD) have high computational complexity among modular operations. For decreasing power dissipation and increasing reconfigurable capability, a Reconfigurable Modular Multiplication Algorithm and Reconfigurable Modular Division Algorithm are proposed, and MM and MD are implemented by two adder units. Combining with the optimization of operation scheduling of PM, on 55 nm CMOS ASIC platform, the proposed architecture takes 0.96, 1.37, 1.87, 2.44 ms and consumes 8.29, 11.86, 16.20, 21.13 uJ to perform one PM on 160-bit, 192-bit, 224-bit, 256-bit field orders. It occupies 56.03 k gate area and has a power of 8.66 mW. The implementation results demonstrate that the proposed architecture outperforms the other contemporary designs reported in the literature in terms of area and configurability.

  • Frank-Wolfe Algorithm for Learning SVM-Type Multi-Category Classifiers

    Kenya TAJIMA  Yoshihiro HIROHASHI  Esmeraldo ZARA  Tsuyoshi KATO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/08/11
      Vol:
    E104-D No:11
      Page(s):
    1923-1929

    The multi-category support vector machine (MC-SVM) is one of the most popular machine learning algorithms. There are numerous MC-SVM variants, although different optimization algorithms were developed for diverse learning machines. In this study, we developed a new optimization algorithm that can be applied to several MC-SVM variants. The algorithm is based on the Frank-Wolfe framework that requires two subproblems, direction-finding and line search, in each iteration. The contribution of this study is the discovery that both subproblems have a closed form solution if the Frank-Wolfe framework is applied to the dual problem. Additionally, the closed form solutions on both the direction-finding and line search exist even for the Moreau envelopes of the loss functions. We used several large datasets to demonstrate that the proposed optimization algorithm rapidly converges and thereby improves the pattern recognition performance.

961-980hit(18690hit)