The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

901-920hit(18690hit)

  • Rate Adaptation for Robust and Low-Latency Video Transmissions Using Multi-AP Wireless LAN

    Kazuma YAMAMOTO  Hiroyuki YOMO  

     
    PAPER

      Pubricized:
    2021/08/20
      Vol:
    E105-B No:2
      Page(s):
    177-185

    In this paper, we propose rate adaptation mechanisms for robust and low-latency video transmissions exploiting multiple access points (Multi-AP) wireless local area networks (WLANs). The Multi-AP video transmissions employ link-level broadcast and packet-level forward error correction (FEC) in order to realize robust and low-latency video transmissions from a WLAN station (STA) to a gateway (GW). The PHY (physical layer) rate and FEC rate play a key role to control trade-off between the achieved reliability and airtime (i.e., occupancy period of the shared channel) for Multi-AP WLANs. In order to finely control this trade-off while improving the transmitted video quality, the proposed rate adaptation controls PHY rate and FEC rate to be employed for Multi-AP transmissions based on the link quality and frame format of conveyed video traffic. With computer simulations, we evaluate and investigate the effectiveness of the proposed rate adaptation in terms of packet delivery rate (PDR), airtime, delay, and peak signal to noise ratio (PSNR). Furthermore, the quality of video is assessed by using the traffic encoded/decoded by the actual video encoder/decoder. All these results show that the proposed rate adaptation controls trade-off between the reliability and airtime well while offering the high-quality and low-latency video transmissions.

  • Balanced, Unbalances, and One-Sided Distributed Teams - An Empirical View on Global Software Engineering Education

    Daniel Moritz MARUTSCHKE  Victor V. KRYSSANOV  Patricia BROCKMANN  

     
    PAPER

      Pubricized:
    2021/09/30
      Vol:
    E105-D No:1
      Page(s):
    2-10

    Global software engineering education faces unique challenges to reflect as close as possible real-world distributed team development in various forms. The complex nature of planning, collaborating, and upholding partnerships present administrative difficulties on top of budgetary constrains. These lead to limited opportunities for students to gain international experiences and for researchers to propagate educational and practical insights. This paper presents an empirical view on three different course structures conducted by the same research and educational team over a four-year time span. The courses were managed in Japan and Germany, facing cultural challenges, time-zone differences, language barriers, heterogeneous and homogeneous team structures, amongst others. Three semesters were carried out before and one during the Covid-19 pandemic. Implications for a recent focus on online education for software engineering education and future directions are discussed. As administrational and institutional differences typically do not guarantee the same number of students on all sides, distributed teams can be 1. balanced, where the number of students on one side is less than double the other, 2. unbalanced, where the number of students on one side is significantly larger than double the other, or 3. one-sided, where one side lacks students altogether. An approach for each of these three course structures is presented and discussed. Empirical analyses and reoccurring patterns in global software engineering education are reported. In the most recent three global software engineering classes, students were surveyed at the beginning and the end of the semester. The questionnaires ask students to rank how impactful they perceive factors related to global software development such as cultural aspects, team structure, language, and interaction. Results of the shift in mean perception are compared and discussed for each of the three team structures.

  • Design and Performance of Low-Density Parity-Check Codes for Noisy Channels with Synchronization Errors

    Ryo SHIBATA  Hiroyuki YASHIMA  

     
    LETTER-Coding Theory

      Pubricized:
    2021/07/14
      Vol:
    E105-A No:1
      Page(s):
    63-67

    In this letter, we study low-density parity-check (LDPC) codes for noisy channels with insertion and deletion (ID) errors. We first propose a design method of irregular LDPC codes for such channels, which can be used to simultaneously obtain degree distributions for different noise levels. We then show the asymptotic/finite-length decoding performances of designed codes and compare them with the symmetric information rates of cascaded ID-noisy channels. Moreover, we examine the relationship between decoding performance and a code structure of irregular LDPC codes.

  • A Robust Canonical Polyadic Tensor Decomposition via Structured Low-Rank Matrix Approximation

    Riku AKEMA  Masao YAMAGISHI  Isao YAMADA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/06/23
      Vol:
    E105-A No:1
      Page(s):
    11-24

    The Canonical Polyadic Decomposition (CPD) is the tensor analog of the Singular Value Decomposition (SVD) for a matrix and has many data science applications including signal processing and machine learning. For the CPD, the Alternating Least Squares (ALS) algorithm has been used extensively. Although the ALS algorithm is simple, it is sensitive to a noise of a data tensor in the applications. In this paper, we propose a novel strategy to realize the noise suppression for the CPD. The proposed strategy is decomposed into two steps: (Step 1) denoising the given tensor and (Step 2) solving the exact CPD of the denoised tensor. Step 1 can be realized by solving a structured low-rank approximation with the Douglas-Rachford splitting algorithm and then Step 2 can be realized by solving the simultaneous diagonalization of a matrix tuple constructed by the denoised tensor with the DODO method. Numerical experiments show that the proposed algorithm works well even in typical cases where the ALS algorithm suffers from the so-called bottleneck/swamp effect.

  • Near Hue-Preserving Reversible Contrast and Saturation Enhancement Using Histogram Shifting

    Rio KUROKAWA  Kazuki YAMATO  Madoka HASEGAWA  

     
    PAPER

      Pubricized:
    2021/10/05
      Vol:
    E105-D No:1
      Page(s):
    54-64

    In recent years, several reversible contrast-enhancement methods for color images using digital watermarking have been proposed. These methods can restore an original image from a contrast-enhanced image, in which the information required to recover the original image is embedded with other payloads. In these methods, the hue component after enhancement is similar to that of the original image. However, the saturation of the image after enhancement is significantly lower than that of the original image, and the obtained image exhibits a pale color tone. Herein, we propose a method for enhancing the contrast and saturation of color images and nearly preserving the hue component in a reversible manner. Our method integrates red, green, and blue histograms and preserves the median value of the integrated components. Consequently, the contrast and saturation improved, whereas the subjective image quality improved. In addition, we confirmed that the hue component of the enhanced image is similar to that of the original image. We also confirmed that the original image was perfectly restored from the enhanced image. Our method can contribute to the field of digital photography as a legal evidence. The required storage space for color images and issues pertaining to evidence management can be reduced considering our method enables the creation of color images before and after the enhancement of one image.

  • Finite-Size Correction of Expectation-Propagation Detection Open Access

    Yuki OBA  Keigo TAKEUCHI  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/07/19
      Vol:
    E105-A No:1
      Page(s):
    77-81

    Expectation propagation (EP) is a powerful algorithm for signal recovery in compressed sensing. This letter proposes correction of a variance message before denoising to improve the performance of EP in the high signal-to-noise ratio (SNR) regime for finite-sized systems. The variance massage is replaced by an observation-dependent consistent estimator of the mean-square error in estimation before denoising. Massive multiple-input multiple-output (MIMO) is considered to verify the effectiveness of the proposed correction. Numerical simulations show that the proposed variance correction improves the high SNR performance of EP for massive MIMO with a few hundred transmit and receive antennas.

  • Device-Free Localization via Sparse Coding with a Generalized Thresholding Algorithm

    Qin CHENG  Linghua ZHANG  Bo XUE  Feng SHU  Yang YU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/08/05
      Vol:
    E105-B No:1
      Page(s):
    58-66

    As an emerging technology, device-free localization (DFL) using wireless sensor networks to detect targets not carrying any electronic devices, has spawned extensive applications, such as security safeguards and smart homes or hospitals. Previous studies formulate DFL as a classification problem, but there are still some challenges in terms of accuracy and robustness. In this paper, we exploit a generalized thresholding algorithm with parameter p as a penalty function to solve inverse problems with sparsity constraints for DFL. The function applies less bias to the large coefficients and penalizes small coefficients by reducing the value of p. By taking the distinctive capability of the p thresholding function to measure sparsity, the proposed approach can achieve accurate and robust localization performance in challenging environments. Extensive experiments show that the algorithm outperforms current alternatives.

  • Pruning Ratio Optimization with Layer-Wise Pruning Method for Accelerating Convolutional Neural Networks

    Koji KAMMA  Sarimu INOUE  Toshikazu WADA  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2021/09/29
      Vol:
    E105-D No:1
      Page(s):
    161-169

    Pruning is an effective technique to reduce computational complexity of Convolutional Neural Networks (CNNs) by removing redundant neurons (or weights). There are two types of pruning methods: holistic pruning and layer-wise pruning. The former selects the least important neuron from the entire model and prunes it. The latter conducts pruning layer by layer. Recently, it has turned out that some layer-wise methods are effective for reducing computational complexity of pruned models while preserving their accuracy. The difficulty of layer-wise pruning is how to adjust pruning ratio (the ratio of neurons to be pruned) in each layer. Because CNNs typically have lots of layers composed of lots of neurons, it is inefficient to tune pruning ratios by human hands. In this paper, we present Pruning Ratio Optimizer (PRO), a method that can be combined with layer-wise pruning methods for optimizing pruning ratios. The idea of PRO is to adjust pruning ratios based on how much pruning in each layer has an impact on the outputs in the final layer. In the experiments, we could verify the effectiveness of PRO.

  • Simulation-Based Understanding of “Charge-Sharing Phenomenon” Induced by Heavy-Ion Incident on a 65nm Bulk CMOS Memory Circuit

    Akifumi MARU  Akifumi MATSUDA  Satoshi KUBOYAMA  Mamoru YOSHIMOTO  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2021/08/05
      Vol:
    E105-C No:1
      Page(s):
    47-50

    In order to expect the single event occurrence on highly integrated CMOS memory circuit, quantitative evaluation of charge sharing between memory cells is needed. In this study, charge sharing area induced by heavy ion incident is quantitatively calculated by using device-simulation-based method. The validity of this method is experimentally confirmed using the charged heavy ion accelerator.

  • JPEG Image Steganalysis Using Weight Allocation from Block Evaluation

    Weiwei LUO  Wenpeng ZHOU  Jinglong FANG  Lingyan FAN  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2021/10/18
      Vol:
    E105-D No:1
      Page(s):
    180-183

    Recently, channel-aware steganography has been presented for high security. The corresponding selection-channel-aware (SCA) detecting algorithms have also been proposed for improving the detection performance. In this paper, we propose a novel detecting algorithm of JPEG steganography, where the embedding probability and block evaluation are integrated into the new probability. This probability can embody the change due to data embedding. We choose the same high-pass filters as maximum diversity cascade filter residual (MD-CFR) to obtain different image residuals and a weighted histogram method is used to extract detection features. Experimental results on detecting two typical steganographic methods show that the proposed method can improve the performance compared with the state-of-art methods.

  • A Simple but Efficient Ranking-Based Differential Evolution

    Jiayi LI  Lin YANG  Junyan YI  Haichuan YANG  Yuki TODO  Shangce GAO  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2021/10/05
      Vol:
    E105-D No:1
      Page(s):
    189-192

    Differential Evolution (DE) algorithm is simple and effective. Since DE has been proposed, it has been widely used to solve various complex optimization problems. To further exploit the advantages of DE, we propose a new variant of DE, termed as ranking-based differential evolution (RDE), by performing ranking on the population. Progressively better individuals in the population are used for mutation operation, thus improving the algorithm's exploitation and exploration capability. Experimental results on a number of benchmark optimization functions show that RDE significantly outperforms the original DE and performs competitively in comparison with other two state-of-the-art DE variants.

  • SRAM: A Septum-Type Polarizer Design Method Based on Superposed Even- and Odd-Mode Excitation Analysis

    Tomoki KANEKO  Hirobumi SAITO  Akira HIROSE  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/07/08
      Vol:
    E105-C No:1
      Page(s):
    9-17

    This paper proposes an analytical method to design septum-type polarizers by assuming a polarizer as a series of four septum elements with a short ridge-waveguide approximation. We determine parameters of respective elements in such a manner that, at the center frequency, the reflection coefficient of the first element is equal to that of the second one, the reflection of the third one equals to that of the forth, and the electrical lengths of the first, second and third elements are 90 deg. We name this method the Short Ridge-waveguide Approximation Method (SRAM). We fabricated an X-band polarizer, which achieves a cross polarization discrimination (XPD) value of 40.7-64.1 dB over 8.0-8.4 GHz, without any numerical optimization.

  • Multi-Source Domain Generalization Using Domain Attributes for Recurrent Neural Network Language Models

    Naohiro TAWARA  Atsunori OGAWA  Tomoharu IWATA  Hiroto ASHIKAWA  Tetsunori KOBAYASHI  Tetsuji OGAWA  

     
    PAPER-Natural Language Processing

      Pubricized:
    2021/10/05
      Vol:
    E105-D No:1
      Page(s):
    150-160

    Most conventional multi-source domain adaptation techniques for recurrent neural network language models (RNNLMs) are domain-centric. In these approaches, each domain is considered independently and this makes it difficult to apply the models to completely unseen target domains that are unobservable during training. Instead, our study exploits domain attributes, which represent common knowledge among such different domains as dialects, types of wordings, styles, and topics, to achieve domain generalization that can robustly represent unseen target domains by combining the domain attributes. To achieve attribute-based domain generalization system in language modeling, we introduce domain attribute-based experts to a multi-stream RNNLM called recurrent adaptive mixture model (RADMM) instead of domain-based experts. In the proposed system, a long short-term memory is independently trained on each domain attribute as an expert model. Then by integrating the outputs from all the experts in response to the context-dependent weight of the domain attributes of the current input, we predict the subsequent words in the unseen target domain and exploit the specific knowledge of each domain attribute. To demonstrate the effectiveness of our proposed domain attributes-centric language model, we experimentally compared the proposed model with conventional domain-centric language model by using texts taken from multiple domains including different writing styles, topics, dialects, and types of wordings. The experimental results demonstrated that lower perplexity can be achieved using domain attributes.

  • Parameter Estimation of Markovian Arrivals with Utilization Data

    Chen LI  Junjun ZHENG  Hiroyuki OKAMURA  Tadashi DOHI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/07/08
      Vol:
    E105-B No:1
      Page(s):
    1-10

    Utilization data (a kind of incomplete data) is defined as the fraction of a fixed period in which the system is busy. In computer systems, utilization data is very common and easily observable, such as CPU utilization. Unlike inter-arrival times and waiting times, it is more significant to consider the parameter estimation of transaction-based systems with utilization data. In our previous work [7], a novel parameter estimation method using utilization data for an Mt/M/1/K queueing system was presented to estimate the parameters of a non-homogeneous Poisson process (NHPP). Since NHPP is classified as a simple counting process, it may not fit actual arrival streams very well. As a generalization of NHPP, Markovian arrival process (MAP) takes account of the dependency between consecutive arrivals and is often used to model complex, bursty, and correlated traffic streams. In this paper, we concentrate on the parameter estimation of an MAP/M/1/K queueing system using utilization data. In particular, the parameters are estimated by using maximum likelihood estimation (MLE) method. Numerical experiments on real utilization data validate the proposed approach and evaluate the effective traffic intensity of the arrival stream of MAP/M/1/K queueing system. Besides, three kinds of utilization datasets are created from a simulation to assess the effects of observed time intervals on both estimation accuracy and computational cost. The numerical results show that MAP-based approach outperforms the exiting method in terms of both the estimation accuracy and computational cost.

  • Kernel-Based Hamilton-Jacobi Equations for Data-Driven Optimal Control: The General Case Open Access

    Yuji ITO  Kenji FUJIMOTO  

     
    INVITED PAPER-Systems and Control

      Pubricized:
    2021/07/12
      Vol:
    E105-A No:1
      Page(s):
    1-10

    Recently, control theory using machine learning, which is useful for the control of unknown systems, has attracted significant attention. This study focuses on such a topic with optimal control problems for unknown nonlinear systems. Because optimal controllers are designed based on mathematical models of the systems, it is challenging to obtain models with insufficient knowledge of the systems. Kernel functions are promising for developing data-driven models with limited knowledge. However, the complex forms of such kernel-based models make it difficult to design the optimal controllers. The design corresponds to solving Hamilton-Jacobi (HJ) equations because their solutions provide optimal controllers. Therefore, the aim of this study is to derive certain kernel-based models for which the HJ equations are solved in an exact sense, which is an extended version of the authors' former work. The HJ equations are decomposed into tractable algebraic matrix equations and nonlinear functions. Solving the matrix equations enables us to obtain the optimal controllers of the model. A numerical simulation demonstrates that kernel-based models and controllers are successfully developed.

  • Monitoring Trails Computation within Allowable Expected Period Specified for Transport Networks

    Nagao OGINO  Takeshi KITAHARA  

     
    PAPER-Network Management/Operation

      Pubricized:
    2021/07/09
      Vol:
    E105-B No:1
      Page(s):
    21-33

    Active network monitoring based on Boolean network tomography is a promising technique to localize link failures instantly in transport networks. However, the required set of monitoring trails must be recomputed after each link failure has occurred to handle succeeding link failures. Existing heuristic methods cannot compute the required monitoring trails in a sufficiently short time when multiple-link failures must be localized in the whole of large-scale managed networks. This paper proposes an approach for computing the required monitoring trails within an allowable expected period specified beforehand. A random walk-based analysis estimates the number of monitoring trails to be computed in the proposed approach. The estimated number of monitoring trails are computed by a lightweight method that only guarantees partial localization within restricted areas. The lightweight method is repeatedly executed until a successful set of monitoring trails achieving unambiguous localization in the entire managed networks can be obtained. This paper demonstrates that the proposed approach can compute a small number of monitoring trails for localizing all independent dual-link failures in managed networks made up of thousands of links within a given expected short period.

  • Firewall Traversal Method by Pseudo-TCP Encapsulation

    Keigo TAGA  Junjun ZHENG  Koichi MOURI  Shoichi SAITO  Eiji TAKIMOTO  

     
    PAPER-Information Network

      Pubricized:
    2021/09/29
      Vol:
    E105-D No:1
      Page(s):
    105-115

    A wide range of communication protocols has recently been developed to address service diversification. At the same time, firewalls (FWs) are installed at the boundaries between internal networks, such as those owned by companies and homes, and the Internet. In general, FWs are configured as whitelists and release only the port corresponding to the service to be used and block communication from other ports. In a previous study, we proposed a method for traversing a FW and enabling communication by inserting a pseudo-transmission control protocol (TCP) header imitating HTTPS into a packet, which normally would be blocked by the FW. In that study, we confirmed the efficiency of the proposed method via its implementation and experiments. Even though common encapsulating techniques work on end-nodes, the previous implementation worked on the relay node assuming a router. Further, middleboxes, which overwrite L3 and L4 headers on the Internet, need to be taken into consideration. Accordingly, we re-implemented the proposed method into an end-node and added a feature countering a typical middlebox, i.e., NAPT, into our implementation. In this paper, we describe the functional confirmation and performance evaluations of both versions of the proposed method.

  • On the Window Choice for Two DFT Magnitude-Based Frequency Estimation Methods

    Hee-Suk PANG  Seokjin LEE  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/07/19
      Vol:
    E105-A No:1
      Page(s):
    53-57

    We analyze the effect of window choice on the zero-padding method and corrected quadratically interpolated fast Fourier transform using a harmonic signal in noise at both high and low signal-to-noise ratios (SNRs) on a theoretical basis. Then, we validate the theoretical analysis using simulations. The theoretical analysis and simulation results using four traditional window functions show that the optimal window is determined depending on the SNR; the estimation errors are the smallest for the rectangular window at low SNR, the Hamming and Hanning windows at mid SNR, and the Blackman window at high SNR. In addition, we analyze the simulation results using the signal-to-noise floor ratio, which appears to be more effective than the conventional SNR in determining the optimal window.

  • Kernel-Based Regressors Equivalent to Stochastic Affine Estimators

    Akira TANAKA  Masanari NAKAMURA  Hideyuki IMAI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/10/05
      Vol:
    E105-D No:1
      Page(s):
    116-122

    The solution of the ordinary kernel ridge regression, based on the squared loss function and the squared norm-based regularizer, can be easily interpreted as a stochastic linear estimator by considering the autocorrelation prior for an unknown true function. As is well known, a stochastic affine estimator is one of the simplest extensions of the stochastic linear estimator. However, its corresponding kernel regression problem is not revealed so far. In this paper, we give a formulation of the kernel regression problem, whose solution is reduced to a stochastic affine estimator, and also give interpretations of the formulation.

  • Stochastic Modeling and Local CD Uniformity Comparison between Negative Metal-Based, Negative- and Positive-Tone Development EUV Resists

    Itaru KAMOHARA  Ulrich WELLING  Ulrich KLOSTERMANN  Wolfgang DEMMERLE  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2021/08/06
      Vol:
    E105-C No:1
      Page(s):
    35-46

    This paper presents a simulation study on the printing behavior of three different EUV resist systems. Stochastic models for negative metal-based resist and conventional chemically amplified resist (CAR) were calibrated and then validated. As for negative-tone development (NTD) CAR, we commenced from a positive-tone development (PTD) CAR calibrated (material) and NTD development models, since state-of-the-art measurements are not available. A conceptual study between PTD CAR and NTD CAR shows that the stochastic inhibitor fluctuation differs for PTD CAR: the inhibitor level exhibits small fluctuation (Mack development). For NTD CAR, the inhibitor fluctuation depends on the NTD type, which is defined by categorizing the difference between the NTD and PTD development thresholds. Respective NTD types have different inhibitor concentration level. Moreover, contact hole printing between negative metal-based and NTD CAR was compared to clarify the stochastic process window (PW) for tone reversed mask. For latter comparison, the aerial image (AI) and secondary electron effect are comparable. Finally, the local CD uniformity (LCDU) for the same 20 nm size, 40 nm pitch contact hole was compared among the three different resists. Dose-dependent behavior of LCDU and stochastic PW for NTD were different for the PTD CAR and metal-based resist. For NTD CAR, small inhibitor level and large inhibitor fluctuation around the development threshold were observed, causing LCDU increase, which is specific to the inverse Mack development resist.

901-920hit(18690hit)