The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

1041-1060hit(18690hit)

  • Character Design Generation System Using Multiple Users' Gaze Information

    Hiroshi TAKENOUCHI  Masataka TOKUMARU  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2021/05/25
      Vol:
    E104-D No:9
      Page(s):
    1459-1466

    We investigate an interactive evolutionary computation (IEC) using multiple users' gaze information when users partially participate in each design evaluation. Many previous IEC systems have a problem that user evaluation loads are too large. Hence, we proposed to employ user gaze information for evaluating designs generated by IEC systems in order to solve this problem. In this proposed system, users just view the presented designs, not assess, then the system automatically creates users' favorite designs. With the user's gaze information, the proposed system generates coordination that can satisfy many users. In our previous study, we verified the effectiveness of the proposed system from a real system operation viewpoint. However, we did not consider the fluctuation of the users during a solution candidate evaluation. In the actual operation of the proposed system, users may change during the process due to the user interchange. Therefore, in this study, we verify the effectiveness of the proposed system when varying the users participating in each evaluation for each generation. In the experiment, we employ two types of situations as assumed in real environments. The first situation changes the number of users evaluating the designs for each generation. The second situation employs various users from the predefined population to evaluate the designs for each generation. From the experimental results in the first situation, we confirm that, despite the change in the number of users during the solution candidate evaluation, the proposed system can generate coordination to satisfy many users. Also, from the results in the second situation, we verify that the proposed system can also generate coordination which both users who participate in the coordination evaluation can more satisfy.

  • Gated Convolutional Neural Networks with Sentence-Related Selection for Distantly Supervised Relation Extraction

    Yufeng CHEN  Siqi LI  Xingya LI  Jinan XU  Jian LIU  

     
    PAPER-Natural Language Processing

      Pubricized:
    2021/06/01
      Vol:
    E104-D No:9
      Page(s):
    1486-1495

    Relation extraction is one of the key basic tasks in natural language processing in which distant supervision is widely used for obtaining large-scale labeled data without expensive labor cost. However, the automatically generated data contains massive noise because of the wrong labeling problem in distant supervision. To address this problem, the existing research work mainly focuses on removing sentence-level noise with various sentence selection strategies, which however could be incompetent for disposing word-level noise. In this paper, we propose a novel neural framework considering both intra-sentence and inter-sentence relevance to deal with word-level and sentence-level noise from distant supervision, which is denoted as Sentence-Related Gated Piecewise Convolutional Neural Networks (SR-GPCNN). Specifically, 1) a gate mechanism with multi-head self-attention is adopted to reduce word-level noise inside sentences; 2) a soft-label strategy is utilized to alleviate wrong-labeling propagation problem; and 3) a sentence-related selection model is designed to filter sentence-level noise further. The extensive experimental results on NYT dataset demonstrate that our approach filters word-level and sentence-level noise effectively, thus significantly outperforms all the baseline models in terms of both AUC and top-n precision metrics.

  • Max-Min 3-Dispersion Problems Open Access

    Takashi HORIYAMA  Shin-ichi NAKANO  Toshiki SAITOH  Koki SUETSUGU  Akira SUZUKI  Ryuhei UEHARA  Takeaki UNO  Kunihiro WASA  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2021/03/19
      Vol:
    E104-A No:9
      Page(s):
    1101-1107

    Given a set P of n points on which facilities can be placed and an integer k, we want to place k facilities on some points so that the minimum distance between facilities is maximized. The problem is called the k-dispersion problem. In this paper, we consider the 3-dispersion problem when P is a set of points on a plane (2-dimensional space). Note that the 2-dispersion problem corresponds to the diameter problem. We give an O(n) time algorithm to solve the 3-dispersion problem in the L∞ metric, and an O(n) time algorithm to solve the 3-dispersion problem in the L1 metric. Also, we give an O(n2 log n) time algorithm to solve the 3-dispersion problem in the L2 metric.

  • Chromatic Art Gallery Problem with r-Visibility is NP-Complete

    Chuzo IWAMOTO  Tatsuaki IBUSUKI  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2021/03/26
      Vol:
    E104-A No:9
      Page(s):
    1108-1115

    The art gallery problem is to find a set of guards who together can observe every point of the interior of a polygon P. We study a chromatic variant of the problem, where each guard is assigned one of k distinct colors. The chromatic art gallery problem is to find a guard set for P such that no two guards with the same color have overlapping visibility regions. We study the decision version of this problem for orthogonal polygons with r-visibility when the number of colors is k=2. Here, two points are r-visible if the smallest axis-aligned rectangle containing them lies entirely within the polygon. In this paper, it is shown that determining whether there is an r-visibility guard set for an orthogonal polygon with holes such that no two guards with the same color have overlapping visibility regions is NP-hard when the number of colors is k=2.

  • Analysis of Lower Bounds for Online Bin Packing with Two Item Sizes

    Hiroshi FUJIWARA  Ken ENDO  Hiroaki YAMAMOTO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2021/03/09
      Vol:
    E104-A No:9
      Page(s):
    1127-1133

    In the bin packing problem, we are asked to place given items, each being of size between zero and one, into bins of capacity one. The goal is to minimize the number of bins that contain at least one item. An online algorithm for the bin packing problem decides where to place each item one by one when it arrives. The asymptotic approximation ratio of the bin packing problem is defined as the performance of an optimal online algorithm for the problem. That value indicates the intrinsic hardness of the bin packing problem. In this paper we study the bin packing problem in which every item is of either size α or size β (≤ α). While the asymptotic approximation ratio for $alpha > rac{1}{2}$ was already identified, that for $alpha leq rac{1}{2}$ is only partially known. This paper is the first to give a lower bound on the asymptotic approximation ratio for any $alpha leq rac{1}{2}$, by formulating linear optimization problems. Furthermore, we derive another lower bound in a closed form by constructing dual feasible solutions.

  • Base Station Cooperation Technologies Using 28GHz-Band Digital Beamforming in High-Mobility Environments Open Access

    Tatsuki OKUYAMA  Nobuhide NONAKA  Satoshi SUYAMA  Yukihiko OKUMURA  Takahiro ASAI  

     
    PAPER

      Pubricized:
    2021/03/23
      Vol:
    E104-B No:9
      Page(s):
    1009-1016

    The fifth-generation (5G) mobile communications system initially introduced massive multiple-input multiple-output (M-MIMO) with analog beamforming (BF) to compensate for the larger path-loss in millimeter-wave (mmW) bands. To solve a coverage issue and support high mobility of the mmW bands, base station (BS) cooperation technologies have been investigated in high-mobility environments. However, previous works assume one mobile station (MS) scenario and analog BF that does not suppress interference among MSs. In order to improve system performance in the mmW bands, fully digital BF that includes digital precoding should be employed to suppress the interference even when MSs travel in high mobility. This paper proposes two mmW BS cooperation technologies that are inter-baseband unit (inter-BBU) and intra-BBU cooperation for the fully digital BF. The inter-BBU cooperation exploits two M-MIMO antennas in two BBUs connected to one central unit by limited-bandwidth fronthaul, and the intra-BBU cooperates two M-MIMO antennas connected to one BBU with Doppler frequency shift compensation. This paper verifies effectiveness of the BS cooperation technologies by both computer simulations and outdoor experimental trials. First, it is shown that that the intra-BBU cooperation can achieve an excellent transmission performance in cases of two and four MSs moving at a velocity of 90km/h by computer simulations. Second, the outdoor experimental trials clarifies that the inter-BBU cooperation maintains the maximum throughput in a wider area than non-BS cooperation when only one MS moves at a maximum velocity of 120km/h.

  • Demonstration Experiment of a 5G Touchless Gate Utilizing Directional Beam and Mobile Edge Computing

    Naoto TSUMACHI  Masaya SHIBAYAMA  Ryuji KOBAYASHI  Issei KANNO  Yasuhiro SUEGARA  

     
    PAPER

      Pubricized:
    2021/03/23
      Vol:
    E104-B No:9
      Page(s):
    1017-1025

    In March 2020, the 5th generation mobile communication system (5G) was launched in Japan. Frequency bands of 3.7GHz, 4.5GHz and 28GHz were allocated for 5G services, and the 5G use cases fall into three broad categories: Enhanced Mobile Broadband (eMBB), Massive Machine Type Communication (mMTC) and Ultra-Reliable Low Latency Communication (URLLC). The use cases and services that take advantage of the characteristics of each category are expected to be put to practical use, and experiments of practical use are underway. This paper introduces and demonstrates a touchless gate that can identify, authenticate and allow passage through the gate by using these features and 5G beam tracking to estimate location by taking advantage of the low latency of 5G and the straightness of the 28GHz band radio wave and its resistance to spreading. Since position estimation error due to reflected waves and other factors has been a problem, we implement an algorithm that tracks the beam and estimates the user's line of movement, and by using an infrared sensor, we made it possible to identify the gate through which the user passes with high probability. We confirmed that the 5G touchless gate is feasible for gate passage. In addition, we demonstrate that a new service based on high-speed high-capacity communication is possible at gate passage by taking advantage of the wide bandwidth of the 28GHz band. Furthermore, as a use case study of the 5G touchless gate, we conducted a joint experiment with an airline company.

  • TDM Based Reference Signal Multiplexing for OFDM Using Faster-than-Nyquist Signaling

    Tsubasa SHOBUDANI  Mamoru SAWAHASHI  Yoshihisa KISHIYAMA  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1079-1088

    This paper proposes time division multiplexing (TDM) based reference signal (RS) multiplexing for faster-than-Nyquist (FTN) signaling using orthogonal frequency division multiplexing (OFDM). We also propose a subframe structure in which a cyclic prefix (CP) is appended to only the TDM based RS block and the first FTN symbol to achieve accurate estimation of the channel response in a multipath fading channel with low CP overhead. Computer simulation results show that the loss in the required average received SNR satisfying the average block error rate (BLER) of 10-2 using the proposed TDM based RS multiplexing from that with ideal channel estimation is suppressed to within approximately 1.2dB and 1.7dB for QPSK and 16QAM, respectively. This is compared to when the improvement ratio of the spectral efficiency from CP-OFDM is 1.31 with the rate-1/2 turbo code. We conclude that the TDM based RS multiplexing with the associated CP multiplexing is effective in achieving accurate channel estimation for FTN signaling using OFDM.

  • Fabrication Process for Superconducting Digital Circuits Open Access

    Mutsuo HIDAKA  Shuichi NAGASAWA  

     
    INVITED PAPER

      Pubricized:
    2021/03/03
      Vol:
    E104-C No:9
      Page(s):
    405-410

    This review provides a current overview of the fabrication processes for superconducting digital circuits at CRAVITY (clean room for analog and digital superconductivity) at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. CRAVITY routinely fabricates superconducting digital circuits using three types of fabrication processes and supplies several thousand chips to its collaborators each year. Researchers at CRAVITY have focused on improving the controllability and uniformity of device parameters and the reliability, which means reducing defects. These three aspects are important for the correct operation of large-scale digital circuits. The current technologies used at CRAVITY permit ±10% controllability over the critical current density (Jc) of Josephson junctions (JJs) with respect to the design values, while the critical current (Ic) uniformity is within 1σ=2% for JJs with areas exceeding 1.0 µm2 and the defect density is on the order of one defect for every 100,000 JJs.

  • Explanatory Rule Generation for Advanced Driver Assistant Systems

    Juha HOVI  Ryutaro ICHISE  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/06/11
      Vol:
    E104-D No:9
      Page(s):
    1427-1439

    Autonomous vehicles and advanced driver assistant systems (ADAS) are receiving notable attention as research fields in both academia and private industry. Some decision-making systems use sets of logical rules to map knowledge of the ego-vehicle and its environment into actions the ego-vehicle should take. However, such rulesets can be difficult to create — for example by manually writing them — due to the complexity of traffic as an operating environment. Furthermore, the building blocks of the rules must be defined. One common solution to this is using an ontology specifically aimed at describing traffic concepts and their hierarchy. These ontologies must have a certain expressive power to enable construction of useful rules. We propose a process of generating sets of explanatory rules for ADAS applications from data using ontology as a base vocabulary and present a ruleset generated as a result of our experiments that is correct for the scope of the experiment.

  • Detection Algorithms for FBMC/OQAM Spatial Multiplexing Systems

    Kuei-Chiang LAI  Chi-Jen CHEN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/03/22
      Vol:
    E104-B No:9
      Page(s):
    1172-1187

    In this paper, we address the problem of detector design in severely frequency-selective channels for spatial multiplexing systems that adopt filter bank multicarrier based on offset quadrature amplitude modulation (FBMC/OQAM) as the communication waveforms. We consider decision feedback equalizers (DFEs) that use multiple feedback filters to jointly cancel the post-cursor components of inter-symbol interference, inter-antenna interference, and, in some configuration, inter-subchannel interference. By exploiting the special structures of the correlation matrix and the staggered property of the FBMC/OQAM signals, we obtain an efficient method of computing the DFE coefficients that requires a smaller number of multiplications than the linear equalizer (LE) and conventional DFE do. The simulation results show that the proposed detectors considerably outperform the LE and conventional DFE at moderate-to-high signal-to-noise ratios.

  • New Almost Periodic Complementary Pairs

    Jiali WU  Rong LUO  Honglei WEI  Yanfeng QI  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/03/05
      Vol:
    E104-A No:9
      Page(s):
    1361-1364

    In this letter, we give a recursive construction of q-ary almost periodic complementary pairs (APCPs) based on an interleaving technique of sequences and Kronercker product. Based on this construction, we obtain new quaternary APCPs with new lengths.

  • Physical Cell ID Detection Probability Using NB-IoT Synchronization Signals in 28-GHz Band

    Daisuke INOUE  Kyogo OTA  Mamoru SAWAHASHI  Satoshi NAGATA  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1110-1119

    This paper presents the physical-layer cell identity (PCID) detection probability using the narrowband primary synchronization signal (NPSS) and narrowband secondary synchronization signal (NSSS) based on the narrowband Internet-of-Things (NB-IoT) radio interface considering frequency offset and the maximum Doppler frequency in the 28-GHz band. Simulation results show that the autocorrelation based NPSS detection method is more effective than the cross-correlation based NPSS detection using frequency offset estimation and compensation before the NPSS received timing detection from the viewpoints of PCID detection probability and computational complexity. We also show that when using autocorrelation based NPSS detection, the loss in the PCID detection probability at the carrier frequency of fc =28GHz compared to that for fc =3.5GHz is only approximately 5% at the average received signal-to-noise ratio (SNR) of 0dB when the frequency stability of a local oscillator of a user equipment (UE) set is 20ppm. Therefore, we conclude that the multiplexing schemes and sequences of NPSS and NSSS based on the NB-IoT radio interface associated with autocorrelation based NPSS detection will support the 28-GHz frequency spectra.

  • Noisy Localization Annotation Refinement for Object Detection

    Jiafeng MAO  Qing YU  Kiyoharu AIZAWA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/05/25
      Vol:
    E104-D No:9
      Page(s):
    1478-1485

    Well annotated dataset is crucial to the training of object detectors. However, the production of finely annotated datasets for object detection tasks is extremely labor-intensive, therefore, cloud sourcing is often used to create datasets, which leads to these datasets tending to contain incorrect annotations such as inaccurate localization bounding boxes. In this study, we highlight a problem of object detection with noisy bounding box annotations and show that these noisy annotations are harmful to the performance of deep neural networks. To solve this problem, we further propose a framework to allow the network to modify the noisy datasets by alternating refinement. The experimental results demonstrate that our proposed framework can significantly alleviate the influences of noise on model performance.

  • Achieving Pairing-Free Aggregate Signatures using Pre-Communication between Signers

    Kaoru TAKEMURE  Yusuke SAKAI  Bagus SANTOSO  Goichiro HANAOKA  Kazuo OHTA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/06/10
      Vol:
    E104-A No:9
      Page(s):
    1188-1205

    Most aggregate signature schemes are relying on pairings, but high computational and storage costs of pairings limit the feasibility of those schemes in practice. Zhao proposed the first pairing-free aggregate signature scheme (AsiaCCS 2019). However, the security of Zhao's scheme is based on the hardness of a newly introduced non-standard computational problem. The recent impossibility results of Drijvers et al. (IEEE S&P 2019) on two-round pairing-free multi-signature schemes whose security based on the standard discrete logarithm (DL) problem have strengthened the view that constructing a pairing-free aggregate signature scheme which is proven secure based on standard problems such as DL problem is indeed a challenging open problem. In this paper, we offer a novel solution to this open problem. We introduce a new paradigm of aggregate signatures, i.e., aggregate signatures with an additional pre-communication stage. In the pre-communication stage, each signer interacts with the aggregator to agree on a specific random value before deciding messages to be signed. We also discover that the impossibility results of Drijvers et al. take effect if the adversary can decide the whole randomness part of any individual signature. Based on the new paradigm and our discovery of the applicability of the impossibility result, we propose a pairing-free aggregate signature scheme such that any individual signature includes a random nonce which can be freely generated by the signer. We prove the security of our scheme based on the hardness of the standard DL problem. As a trade-off, in contrast to the plain public-key model, which Zhao's scheme uses, we employ a more restricted key setup model, i.e., the knowledge of secret-key model.

  • Pilot De-Contamination by Modified HTRCI with Time-Domain CSI Separation for Two-Cell MIMO Downlink

    Kakeru MATSUBARA  Shun KUROKI  Koki ITO  Kazushi SHIMADA  Kazuki MARUTA  Chang-Jun AHN  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/02/25
      Vol:
    E104-A No:9
      Page(s):
    1345-1348

    This letter expands the previously proposed High Time Resolution Carrier Interferometry (HTRCI) to estimate a larger amount of channel status information (CSI). HTRCI is based on a comb-type pilot symbol on OFDM and CSI for null subcarriers are interpolated by time-domain signal processing. In order to utilize such null pilot subcarriers for increasing estimable CSI, they should generally be separated in frequency-domain prior to estimation and interpolation processes. The main proposal is its separation scheme in conjunction with the HTRCI treatment of the temporal domain. Its effectiveness is verified by a pilot de-contamination on downlink two-cell MIMO transmission scenario. Binary error rate (BER) performance can be improved in comparison to conventional HTRCI and zero padding (ZP) which replaces the impulse response alias with zeros.

  • Frequency-Domain Iterative Block DFE Using Erasure Zones and Improved Parameter Estimation

    Jian-Yu PAN  Kuei-Chiang LAI  Yi-Ting LI  Szu-Lin SU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/03/22
      Vol:
    E104-B No:9
      Page(s):
    1159-1171

    Iterative block decision feedback equalization with hard-decision feedback (HD-IBDFE) was proposed for single-carrier transmission with frequency-domain equalization (SC-FDE). The detection performance hinges upon not only error propagation, but also the accuracy of estimating the parameters used to re-compute the equalizer coefficients at each iteration. In this paper, we use the erasure zone (EZ) to de-emphasize the feedback values when the hard decisions are not reliable. EZ use also enables a more accurate, and yet computationally more efficient, parameter estimation method than HD-IBDFE. We show that the resulting equalizer coefficients share the same mathematical form as that of the HD-IBDFE, thereby preserving the merit of not requiring matrix inverse operations in calculating the equalizer coefficients. Simulations show that, by using the EZ and the proposed parameter estimation method, a significant performance improvement over the conventional HD-IBDFE can be achieved, but with lower complexity.

  • Automatic Drawing of Complex Metro Maps

    Masahiro ONDA  Masaki MORIGUCHI  Keiko IMAI  

     
    PAPER-Graphs and Networks

      Pubricized:
    2021/03/08
      Vol:
    E104-A No:9
      Page(s):
    1150-1155

    The Tokyo subway is one of the most complex subway networks in the world and it is difficult to compute a visually readable metro map using existing layout methods. In this paper, we present a new method that can generate complex metro maps such as the Tokyo subway network. Our method consists of two phases. The first phase generates rough metro maps. It decomposes the metro networks into smaller subgraphs and partially generates rough metro maps. In the second phase, we use a local search technique to improve the aesthetic quality of the rough metro maps. The experimental results including the Tokyo metro map are shown.

  • Physical Cell ID Detection Using Joint Estimation of Frequency Offset and SSS Sequence for NR Initial Access

    Daisuke INOUE  Kyogo OTA  Mamoru SAWAHASHI  Satoshi NAGATA  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1120-1128

    This paper proposes a physical-layer cell identity (PCID) detection method that uses joint estimation of the frequency offset and secondary synchronization signal (SSS) sequence for the 5G new radio (NR) initial access with beamforming transmission at a base station. Computer simulation results show that using the PCID detection method with the proposed joint estimation yields an almost identical PCID detection probability as the primary synchronization signal (PSS) detection probability at an average received signal-to-noise ratio (SNR) of higher than approximately -5dB suggesting that the residual frequency offset is compensated to a sufficiently low level for the SSS sequence estimation. It is also shown that the PCID detection method achieves a high PCID detection probability of greater than 90% and 50% at the carrier frequency of 30 and 50GHz, respectively, at the average received SNR of 0dB for the frequency stability of a user equipment oscillator of 3ppm.

  • Convex and Differentiable Formulation for Inverse Problems in Hilbert Spaces with Nonlinear Clipping Effects Open Access

    Natsuki UENO  Shoichi KOYAMA  Hiroshi SARUWATARI  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2021/02/25
      Vol:
    E104-A No:9
      Page(s):
    1293-1303

    We propose a useful formulation for ill-posed inverse problems in Hilbert spaces with nonlinear clipping effects. Ill-posed inverse problems are often formulated as optimization problems, and nonlinear clipping effects may cause nonconvexity or nondifferentiability of the objective functions in the case of commonly used regularized least squares. To overcome these difficulties, we present a tractable formulation in which the objective function is convex and differentiable with respect to optimization variables, on the basis of the Bregman divergence associated with the primitive function of the clipping function. By using this formulation in combination with the representer theorem, we need only to deal with a finite-dimensional, convex, and differentiable optimization problem, which can be solved by well-established algorithms. We also show two practical examples of inverse problems where our theory can be applied, estimation of band-limited signals and time-harmonic acoustic fields, and evaluate the validity of our theory by numerical simulations.

1041-1060hit(18690hit)