The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

3021-3040hit(20498hit)

  • Green's Function and Radiation over a Periodic Surface: Reciprocity and Reversal Green's Function

    Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:1
      Page(s):
    3-11

    This paper deals with the scattering of a cylindrical wave by a perfectly conductive periodic surface. This problem is equivalent to finding the Green's function G(x,z|xs,zs), where (x,z) and (xs,zs) are the observation and radiation source positions above the periodic surface, respectively. It is widely known that the Green's function satisfies the reciprocity: G(x,z|xs,zs)=G(xs,zs|x,z), where G(xs,zs|x,z) is named the reversal Green's function in this paper. So far, there is no numerical method to synthesize the Green's function with the reciprocal property in the grating theory. By combining the shadow theory, the reciprocity theorem for scattering factors and the average filter introduced previously, this paper gives a new numerical method to synthesize the Green's function with reciprocal property. The reciprocity means that any properties of the Green's function can be obtained from the reversal Green's function. Taking this fact, this paper obtains several new formulae on the radiation and scattering from the reversal Green's function, such as a spectral representation of the Green's function, an asymptotic expression of the Green's function in the far region, the angular distribution of radiation power, the total power of radiation and the relative error of power balance. These formulae are simple and easy to use. Numerical examples are given for a very rough periodic surface. Several properties of the radiation and scattering are calculated for a transverse magnetic (TM) case and illustrated in figures.

  • Outage Capacity Analysis of Cooperative Relay Networks Using Statistic CSI with Smart Grid

    Feng KE  Zijie DENG  Yue ZHANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/07/13
      Vol:
    E101-B No:1
      Page(s):
    253-260

    The smart grid is expected to be the next generation electricity grid. It is beneficial for communication systems to improve energy efficiency and reduce carbon emissions. In this paper, we propose a distributed game theoretical framework for decode-and-forward (DF) cooperative relay networks with smart grid. A relay selection and power allocation strategy based on the buyer-seller game is proposed that processes the statistic channel-state information (CSI) available. The user is modeled as a buyer who selects the optimal relay and determines the optimal amount of power to be bought from the relay by the maximum utility criterion. The relay powered by the smart grid is modeled as a seller who determines the price of the power to achieve the maximum profit with its own cost. The equilibrium conditions of the game between the two sides are analyzed. The simulation results verify the existence of a Nash equilibrium point and illustrate that the proposed strategy may guarantee the utility of the source, the relay and the network and increase the energy efficiency.

  • On Design of Robust Lightweight Stream Cipher with Short Internal State

    Subhadeep BANIK  Takanori ISOBE  Masakatu MORII  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    99-109

    The stream cipher Sprout with a short internal state was proposed in FSE 2015. Although the construction guaranteed resistance to generic Time Memory Data Tradeoff attacks, there were some weaknesses in the design and the cipher was completely broken. In this paper we propose a family of stream ciphers LILLE in which the size of the internal state is half the size of the secret key. Our main goal is to develop robust lightweight stream cipher. To achieve it, our cipher based on the two-key Even Mansour construction and thus its security against key/state recovery attacks reduces to a well analyzed problem. We also prove that like Sprout, the construction is resistant to generic Time Memory Data Tradeoff attacks. Unlike Sprout, the construction of the cipher guarantees that there are no weak key-IV pairs which produce a keystream sequence with short period or which make the algebraic structure of the cipher weaker and easy to cryptanalyze. The reference implementations of all members of the LILLE family with standard cell libraries based on the STM 90nm and 65nm processes were also found to be smaller than Grain v1 while security of LILLE family depend on reliable problem in the symmetric cryptography.

  • Accelerated Widely-Linear Signal Detection by Polynomials for Over-Loaded Large-Scale MIMO Systems

    Qian DENG  Li GUO  Chao DONG  Jiaru LIN  Xueyan CHEN  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/07/13
      Vol:
    E101-B No:1
      Page(s):
    185-194

    In this paper, we propose a low-complexity widely-linear minimum mean square error (WL-MMSE) signal detection based on the Chebyshev polynomials accelerated symmetric successive over relaxation (SSORcheb) algorithm for uplink (UL) over-loaded large-scale multiple-input multiple-output (MIMO) systems. The technique of utilizing Chebyshev acceleration not only speeds up the convergence rate significantly, and maximizes the data throughput, but also reduces the cost. By utilizing the random matrix theory, we present good estimates for the Chebyshev acceleration parameters of the proposed signal detection in real large-scale MIMO systems. Simulation results demonstrate that the new WL-SSORcheb-MMSE detection not only outperforms the recently proposed linear iterative detection, and the optimal polynomial expansion (PE) WL-MMSE detection, but also achieves a performance close to the exact WL-MMSE detection. Additionally, the proposed detection offers superior sum rate and bit error rate (BER) performance compared to the precision MMSE detection with substantially fewer arithmetic operations in a short coherence time. Therefore, the proposed detection can satisfy the high-density and high-mobility requirements of some of the emerging wireless networks, such as, the high-mobility Internet of Things (IoT) networks.

  • Enhanced Performance of MUSIC Algorithm Using Spatial Interpolation in Automotive FMCW Radar Systems

    Seongwook LEE  Young-Jun YOON  Seokhyun KANG  Jae-Eun LEE  Seong-Cheol KIM  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/06/28
      Vol:
    E101-B No:1
      Page(s):
    163-175

    In this paper, we propose a received signal interpolation method for enhancing the performance of multiple signal classification (MUSIC) algorithm. In general, the performance of the conventional MUSIC algorithm is very sensitive to signal-to-noise ratio (SNR) of the received signal. When array elements receive the signals with nonuniform SNR values, the resolution performance is degraded compared to elements receiving the signals with uniform SNR values. Hence, we propose a signal calibration technique for improving the resolution of the algorithm. First, based on original signals, rough direction of arrival (DOA) estimation is conducted. In this stage, using frequency-domain received signals, SNR values of each antenna element in the array are estimated. Then, a deteriorated element that has a relatively lower SNR value than those of the other elements is selected by our proposed scheme. Next, the received signal of the selected element is spatially interpolated based on the signals received from the neighboring elements and the DOA information extracted from the rough estimation. Finally, fine DOA estimation is performed again with the calibrated signal. Simulation results show that the angular resolution of the proposed method is better than that of the conventional MUSIC algorithm. Also, we apply the proposed scheme to actual data measured in the testing ground, and it gives us more enhanced DOA estimation result.

  • The Complexity of (List) Edge-Coloring Reconfiguration Problem

    Hiroki OSAWA  Akira SUZUKI  Takehiro ITO  Xiao ZHOU  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E101-A No:1
      Page(s):
    232-238

    Let G be a graph such that each edge has its list of available colors, and assume that each list is a subset of the common set consisting of k colors. Suppose that we are given two list edge-colorings f0 and fr of G, and asked whether there exists a sequence of list edge-colorings of G between f0 and fr such that each list edge-coloring can be obtained from the previous one by changing a color assignment of exactly one edge. This problem is known to be PSPACE-complete for every integer k ≥ 6 and planar graphs of maximum degree three, but any computational hardness was unknown for the non-list variant in which every edge has the same list of k colors. In this paper, we first improve the known result by proving that, for every integer k ≥ 4, the problem remains PSPACE-complete even for planar graphs of bounded bandwidth and maximum degree three. Since the problem is known to be solvable in polynomial time if k ≤ 3, our result gives a sharp analysis of the complexity status with respect to the number k of colors. We then give the first computational hardness result for the non-list variant: for every integer k ≥ 5, the non-list variant is PSPACE-complete even for planar graphs of bandwidth quadratic in k and maximum degree k.

  • A Novel GPS Based Real Time Orbit Determination Using Adaptive Extended Kalman Filter

    Yang XIAO  Limin LI  Jiachao CHANG  Kang WU  Guang LIANG  Jinpei YU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:1
      Page(s):
    287-292

    The combination of GPS measurements with the dynamic model via a Kalman filter or an extended Kalman filter, also known as GPS based reduced dynamic orbit determination (RDOD) techniques, have been widely used for accurate and real time navigation of satellites in low earth orbit (LEO). In previous studies, the GPS measurement noise variance is empirically taken as a constant, which is not reasonable because of insufficient prior information or dynamic environment. An improper estimate of the measurement noise may lead to poor performance or even divergence of the filter. In this letter, an adaptive extended Kalman filter (AEKF)-based approach using GPS dual-frequency pseudo-range measurements is presented, where the GPS pseudo-range measurement noise variance is adaptively estimated by the Carrier to Noise Ratio (C/N0) from the tracking loop of GPS receiver. The simulation results show that the proposed AEKF approach can achieve apparent improvements of the position accuracy and almost brings no extra computational burdens for satellite borne processor.

  • A Spectrum Efficient Spatial Polarized QAM Modulation Scheme for Physical Layer Security in Dual-Polarized Satellite Systems

    Zhangkai LUO  Huali WANG  Huan HAO  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/07/13
      Vol:
    E101-B No:1
      Page(s):
    146-153

    In this paper, a spectrum efficient spatial polarized quadrature amplitude modulation (SPQM) scheme for physical layer security in dual-polarized satellite systems is proposed, which uses the carrier's polarization state, amplitude, phase and the polarization characteristics of the transmitting beams as information bearing parameters, which can improve the transmission efficiency and enhance the transmission security at the same time. As we know, the depolarization effect is the main drawback that affects the symbol error rate performance when polarization states are used to carry information. To solve the problem, we exploit an additional degree of freedom, time, in the proposed scheme, which means that two components of the polarized signal are transmitted in turn in two symbol periods, thus they can be recovered without mutual interference. Furthermore, orthogonal polarizations of the transmitting beam are used as spatial modulation for further increasing the throughput. In addition, in order to improve the transmission security, two transmitting beams are designed to transmit the two components of the polarized signal respectively. In this way, a secure transmission link is formed from the transmitter to the receiver to prevent eavesdropping. Finally, superiorities of SPQM are validated by the theoretical analysis and simulation results in dual-polarized satellite systems.

  • Relay-Assisted Load Balancing Scheme Based on Practical Throughput Estimation

    Won-Tae YU  Jeongsik CHOI  Woong-Hee LEE  Seong-Cheol KIM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/07/03
      Vol:
    E101-B No:1
      Page(s):
    242-252

    In cellular network environments, where users are not evenly distributed across cells, overloaded base stations handling many users have difficulties in providing effective and fair services with their limited resources. Additionally, users at the cell edge may suffer from the potential problems resulting from low signal-to-interference ratio owing to the incessant interference from adjacent cells. In this paper, we propose a relay-assisted load balancing scheme to resolve these traffic imbalance. The proposed scheme can improve the performance of the overall network by utilizing relay stations to divert heavy traffic to other cells, and by adopting a partial frequency-reuse scheme to mitigate inter-cell interference. Each user and relay station calculates its own utility influence in the neighboring candidates for reassociation and decides whether to stay or move to another cell presenting the maximum total network utility increment. Simulation results show that the proposed scheme improves the overall network fairness to users by improving the performance of cell boundary users without degrading the total network throughput. We achieve a system performance gain of 16 ∼ 35% when compared with conventional schemes, while ensuring fairness among users.

  • A Study on Quality Metrics for 360 Video Communications

    Huyen T. T. TRAN  Cuong T. PHAM  Nam PHAM NGOC  Anh T. PHAM  Truong Cong THANG  

     
    PAPER

      Pubricized:
    2017/10/16
      Vol:
    E101-D No:1
      Page(s):
    28-36

    360 videos have recently become a popular virtual reality content type. However, a good quality metric for 360 videos is still an open issue. In this work, our goal is to identify appropriate objective quality metrics for 360 video communications. Especially, fourteen objective quality measures at different processing phases are considered. Also, a subjective test is conducted in this study. The relationship between objective quality and subjective quality is investigated. It is found that most of the PSNR-related quality measures are well correlated with subjective quality. However, for evaluating video quality across different contents, a content-based quality metric is needed.

  • An Ontological Model for Fire Emergency Situations

    Kattiuscia BITENCOURT  Frederico ARAÚJO DURÃO  Manoel MENDONÇA  Lassion LAIQUE BOMFIM DE SOUZA SANTANA  

     
    PAPER

      Pubricized:
    2017/09/15
      Vol:
    E101-D No:1
      Page(s):
    108-115

    The emergency response process is quite complex since there is a wide variety of elements to be evaluated for taking decisions. Uncertainties generated by subjectivity and imprecision affect the safety and effectiveness of actions. The aim of this paper is to develop an onto-logy for emergency response protocols, in particular, to fires in buildings. This developed ontology supports the knowledge sharing, evaluation and review of the protocols used, contributing to the tactical and strategic planning of organizations. The construction of the ontology was based on the methodology Methontology. The domain specification and conceptualization were based in qualitative research, in which were evaluated 131 terms with definitions, of which 85 were approved by specialists. From there, in the Protégé tool, the domain's taxonomy and the axioms were created. The specialists validated the ontology using the assessment by human approach (taxonomy, application and structure). Thus, a sustainable ontology model to the rescue tactical phase was ensured.

  • Optimal Permutation Based Block Compressed Sensing for Image Compression Applications

    Yuqiang CAO  Weiguo GONG  Bo ZHANG  Fanxin ZENG  Sen BAI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2017/10/20
      Vol:
    E101-D No:1
      Page(s):
    215-224

    Block compressed sensing (CS) with optimal permutation is a promising method to improve sampling efficiency in CS-based image compression. However, the existing optimal permutation scheme brings a large amount of extra data to encode the permutation information because it needs to know the permutation information to accomplish signal reconstruction. When the extra data is taken into consideration, the improvement in sampling efficiency of this method is limited. In order to solve this problem, a new optimal permutation strategy for block CS (BCS) is proposed. Based on the proposed permutation strategy, an improved optimal permutation based BCS method called BCS-NOP (BCS with new optimal permutation) is proposed in this paper. Simulation results show that the proposed approach reduces the amount of extra data to encode the permutation information significantly and thereby improves the sampling efficiency compared with the existing optimal permutation based BCS approach.

  • A White-Box Cryptographic Implementation for Protecting against Power Analysis

    Seungkwang LEE  

     
    LETTER-Information Network

      Pubricized:
    2017/10/19
      Vol:
    E101-D No:1
      Page(s):
    249-252

    Encoded lookup tables used in white-box cryptography are known to be vulnerable to power analysis due to the imbalanced encoding. This means that the countermeasures against white-box attacks can not even defend against gray-box attacks. For this reason, those who want to defend against power analysis through the white-box cryptographic implementation need to find other ways. In this paper, we propose a method to defend power analysis without resolving the problematic encoding problem. Compared with the existing white-box cryptography techniques, the proposed method has twice the size of the lookup table and nearly the same amount of computation.

  • Learning Deep Relationship for Object Detection

    Nuo XU  Chunlei HUO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/09/28
      Vol:
    E101-D No:1
      Page(s):
    273-276

    Object detection has been a hot topic of image processing, computer vision and pattern recognition. In recent years, training a model from labeled images using machine learning technique becomes popular. However, the relationship between training samples is usually ignored by existing approaches. To address this problem, a novel approach is proposed, which trains Siamese convolutional neural network on feature pairs and finely tunes the network driven by a small amount of training samples. Since the proposed method considers not only the discriminative information between objects and background, but also the relationship between intraclass features, it outperforms the state-of-arts on real images.

  • Performance Analysis of a Cognitive Radio Network with Imperfect Spectrum Sensing

    Osama SALAMEH  Koen DE TURCK  Dieter FIEMS  Herwig BRUNEEL  Sabine WITTEVRONGEL  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/06/22
      Vol:
    E101-B No:1
      Page(s):
    213-222

    In Cognitive Radio Networks (CRNs), spectrum sensing is performed by secondary (unlicensed) users to utilize transmission opportunities, so-called white spaces or spectrum holes, in the primary (licensed) frequency bands. Secondary users (SUs) perform sensing upon arrival to find an idle channel for transmission as well as during transmission to avoid interfering with primary users (PUs). In practice, spectrum sensing is not perfect and sensing errors including false alarms and misdetections are inevitable. In this paper, we develop a continuous-time Markov chain model to study the effect of false alarms and misdetections of SUs on several performance measures including the collision rate between PUs and SUs, the throughput of SUs and the SU delay in a CRN. Numerical results indicate that sensing errors can have a high impact on the performance measures.

  • Efficient Sphere Decoding Based on a Regular Detection Tree for Generalized Spatial Modulation MIMO Systems

    Hye-Yeon YOON  Gwang-Ho LEE  Tae-Hwan KIM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/07/10
      Vol:
    E101-B No:1
      Page(s):
    223-231

    The generalized spatial modulation (GSM) is a new transmission technique that can realize high-performance multiple-input multiple-output (MIMO) communication systems with a low RF complexity. This paper presents an efficient sphere decoding method used to perform the symbol detection for the generalized spatial modulation (GSM) multiple-input multiple-output (MIMO) systems. In the proposed method, the cost metric is modified so that it does not include the cancellation of the nonexistent interference. The modified cost metric can be computed by formulating a detection tree that has a regular structure representing the transmit antenna combinations as well as the symbol vectors, both of which are detected efficiently by finding the shortest path on the basis of an efficient tree search algorithm. As the tree search algorithm is performed for the regular detection tree to compute the modified but mathematically-equivalent cost metric, the efficiency of the sphere decoding is improved while the bit-error rate performance is not degraded. The simulation results show that the proposed method reduces the complexity significantly when compared with the previous method: for the 6×6 64QAM GSM-MIMO system with two active antennas, the average reduction rate of the complexity is as high as 45.8% in the count of the numerical operations.

  • Wiener-Hopf Analysis of the Plane Wave Diffraction by a Thin Material Strip: the Case of E Polarization

    Takashi NAGASAKA  Kazuya KOBAYASHI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:1
      Page(s):
    12-19

    The problem of E-polarized plane wave diffraction by a thin material strip is analyzed using the Wiener-Hopf technique together with approximate boundary conditions. Exact and high-frequency asymptotic solutions are obtained. Our final solution is valid for the case where the strip thickness is small and the strip width is large in comparison to the wavelength. The scattered field is evaluated asymptotically based on the saddle point method and a far field expression is derived. Numerical examples on the radar cross section (RCS) are presented for various physical parameters and the scattering characteristics of the strip are discussed in detail.

  • An Efficient Algorithm for Location-Aware Query Autocompletion Open Access

    Sheng HU  Chuan XIAO  Yoshiharu ISHIKAWA  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2017/10/05
      Vol:
    E101-D No:1
      Page(s):
    181-192

    Query autocompletion is an important and practical technique when users want to search for desirable information. As mobile devices become more and more popular, one of the main applications is location-aware service, such as Web mapping. In this paper, we propose a new solution to location-aware query autocompletion. We devise a trie-based index structure and integrate spatial information into trie nodes. Our method is able to answer both range and top-k queries. In addition, we discuss the extension of our method to support the error tolerant feature in case user's queries contain typographical errors. Experiments on real datasets show that the proposed method outperforms existing methods in terms of query processing performance.

  • A Local Feature Aggregation Method for Music Retrieval

    Jin S. SEO  

     
    LETTER

      Pubricized:
    2017/10/16
      Vol:
    E101-D No:1
      Page(s):
    64-67

    The song-level feature summarization is an essential building block for browsing, retrieval, and indexing of digital music. This paper proposes a local pooling method to aggregate the feature vectors of a song over the universal background model. Two types of local activation patterns of feature vectors are derived; one representation is derived in the form of histogram, and the other is given by a binary vector. Experiments over three publicly-available music datasets show that the proposed local aggregation of the auditory features is promising for music-similarity computation.

  • Encoding Detection and Bit Rate Classification of AMR-Coded Speech Based on Deep Neural Network

    Seong-Hyeon SHIN  Woo-Jin JANG  Ho-Won YUN  Hochong PARK  

     
    LETTER-Speech and Hearing

      Pubricized:
    2017/10/20
      Vol:
    E101-D No:1
      Page(s):
    269-272

    A method for encoding detection and bit rate classification of AMR-coded speech is proposed. For each texture frame, 184 features consisting of the short-term and long-term temporal statistics of speech parameters are extracted, which can effectively measure the amount of distortion due to AMR. The deep neural network then classifies the bit rate of speech after analyzing the extracted features. It is confirmed that the proposed features provide better performance than the conventional spectral features designed for bit rate classification of coded audio.

3021-3040hit(20498hit)