The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

3201-3220hit(20498hit)

  • Performance Analysis of RSS-AoA-Based Key Generation Scheme for Mobile Wireless Nodes

    Yida WANG  Xinrong GUAN  Weiwei YANG  Yueming CAI  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Vol:
    E100-A No:10
      Page(s):
    2167-2171

    By exploiting the reciprocity and randomness properties of wireless channels, physical-layer-based key generation provides a stable secrecy channel even when the main channel suffers from a bad condition. Even though the channel variation due to the mobility of nodes in wireless channels provides an improvement of key generation rate (KGR), it decreases the key consistency probability (KCP) between the node pairs. Inspired by the received signal strength(RSS)-angle of arrival(AoA)-based geolocation research, in this work, we analyze the performance of the key extraction using the RSS and AoA. We aim to identify a way to utilize the high KGR of the AoA-based method to overcome the major drawback of having a low KGR in the most common RSS-based scheme. Specifically, we derive the KCP and KGR of the RSS-AoA-based key generation scheme. Further, we propose a new performance metric called effective key generation rate (EKGR), to evaluate the designed key generation scheme in practical scenarios. Finally, we provide numerical results to verify the accuracy of the presented theoretical analysis.

  • Numerical Investigation of a Multi-Rate Coherent Burst-Mode PDM-QPSK Optical Receiver for Flexible Optical Networks

    José Manuel Delgado MENDINUETA  Hideaki FURUKAWA  Satoshi SHINADA  Naoya WADA  

     
    PAPER

      Pubricized:
    2017/04/20
      Vol:
    E100-B No:10
      Page(s):
    1758-1764

    We numerically investigate a PDM-QPSK multi-rate coherent burst-mode optical receiver capable of receiving 3 different line-rates, suitable for next generation optical networks such as hybrid optical circuit switching (OCS)/optical packet switching (OPS) networks, access networks and datacenter networks. The line-rate detection algorithm relies on a simple-to-generate optical header, it is based on the fast Fourier transform (FFT) which can be efficiently implemented with the Goertzel algorithm, and it is insensitive to polarization rotations and frequency offset. Numerically, we demonstrate that performance in terms of packet detection rate (PER) can be tailored by controlling the sizes of the packet header and the line-rate estimator.

  • Novel Precoder Design with Generalized Side-Information Cancellation for Multiuser MIMO Downlink Systems

    Juinn-Horng DENG  Kuang-Min LIN  Meng-Lin KU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/21
      Vol:
    E100-B No:10
      Page(s):
    1911-1920

    A novel generalized side-information cancellation (GSIC) precoder is proposed for multiuser multi-input multi-output (MIMO) downlink systems with channel state information at the transmitter. The proposed transceiver involves the following stages. First, a minimum mean square error (MMSE) based channel inversion (MMSE-CI) technique is utilized to suppress multiuser broadcast interference. By using a GSIC technique, it can further reduce the residual multiuser interference and the noise induced by MMSE-CI preprocessing. Next, with a singular value decomposition method, the spatial stream interference of each user is suppressed by the pre-processing and post-processing eigenvector matrices. Finally, the proposed precoder can be extended to joint water filling and diagonal loading methods for performance enhancement. For the correlated MIMO channels, signal subspace and antenna selection methods, incorporating the proposed GSIC precoder, are further designed to maximize the sum rate performance. Simulation results show that the proposed GSIC precoder outperforms the conventional precoders. Besides, simulation results confirm that the proposed GSIC precoder with water filling, diagonal loading, and signal subspace techniques exhibits excellent performance.

  • Variants of Spray and Forwarding Scheme in Delay Tolerant Networks

    Mohammad Abdul AZIM  Babar SHAH  Beom-Su KIM  Kyong Hoon KIM  Ki-Il KIM  

     
    PAPER-Network

      Pubricized:
    2017/03/23
      Vol:
    E100-B No:10
      Page(s):
    1807-1817

    Delay Tolerant Networks (DTN) protocols based on the store-and-carry principle offer useful functions such as forwarding, utility value, social networks, and network coding. Although many DTN protocol proposals have been offered, work continues to improve performance. In order to implement DTN functions, each protocol introduces multiple parameters; their performance is largely dependent on how the parameter values are set. In this paper, we focus on improving spray and wait (S&W) by proposing a communication protocol named a Spray and AHP-GRA-based Forwarding (S&AGF) and Spray and Fuzzy based Forwarding (S&FF) scheme for DTN. The proposed protocols include a new forwarding scheme intended to extend network lifetime as well as maintain acceptable delivery ratio by addressing a deficiency in existing schemes that do not take energy into consideration. We choose the most suitable relay node by taking the energy, mobility, measured parameters of nodes into account. The simulation-based comparison demonstrates that the proposed S&AGF and S&FF schemes show better balanced performance level in terms of both delivery ratio and network lifetime than original S&W and its variants.

  • Analysis of Timing and Frequency Offsets on OFDM Systems for Fractional Sampling Rate

    Byungju LIM  Young-Chai KO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/03/17
      Vol:
    E100-B No:10
      Page(s):
    1946-1951

    Timing and frequency offsets are caused by imperfect synchronization at the receiver. These errors degrade the performance of OFDM systems by introducing inter-carrier-interference (ICI) and inter-symbol-interference (ISI). In this paper, we derive signal-to-interference ratio (SIR) analytically with timing and frequency offsets for the case that the sampling rate of analog-to-digital converter (ADC) in OFDM receiver is an integer fraction of the signal bandwidth. We find the exact form of interference power as a function of the fractional sampling rate. Our derived analysis is confirmed by simulations and can be applied to see the exact performance of OFDM systems with fractional sampling rate.

  • Random-Valued Impulse Noise Removal Using Non-Local Search for Similar Structures and Sparse Representation

    Kengo TSUDA  Takanori FUJISAWA  Masaaki IKEHARA  

     
    PAPER-Image

      Vol:
    E100-A No:10
      Page(s):
    2146-2153

    In this paper, we introduce a new method to remove random-valued impulse noise in an image. Random-valued impulse noise replaces the pixel value at a random position by a random value. Due to the randomness of the noisy pixel values, it is difficult to detect them by comparison with neighboring pixels, which is used in many conventional methods. Then we improve the recent noise detector which uses a non-local search of similar structure. Next we propose a new noise removal algorithm by sparse representation using DCT basis. Furthermore, the sparse representation can remove impulse noise by using the neighboring similar image patch. This method has much more superior noise removal performance than conventional methods at images. We confirm the effectiveness of the proposed method quantitatively and qualitatively.

  • Fast Parameter Estimation for Polyphase P Codes Modulated Radar Signals

    Qi ZHANG  Pei WANG  Jun ZHU  Bin TANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:10
      Page(s):
    2162-2166

    A fast parameter estimation method with a coarse estimation and a fine estimation for polyphase P coded signals is proposed. For a received signal with N sampling points, the proposed method has an improved performance when the signal-to-noise ratio (SNR) is larger than 2dB and a lower computational complexity O(N logs N) compared with the latest time-frequency rate estimation method whose computational complexity is O(N2).

  • Generalized Framework to Attack RSA with Special Exposed Bits of the Private Key

    Shixiong WANG  Longjiang QU  Chao LI  Shaojing FU  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:10
      Page(s):
    2113-2122

    In this paper, we study partial key exposure attacks on RSA where the number of unexposed blocks of the private key is greater than or equal to one. This situation, called generalized framework of partial key exposure attack, was first shown by Sarkar [22] in 2011. Under a certain condition for the values of exposed bits, we present a new attack which needs fewer exposed bits and thus improves the result in [22]. Our work is a generalization of [28], and the approach is based on Coppersmith's method and the technique of unravelled linearization.

  • A Study on Multi-User Interference Cancellers for Synchronous Optical CDMA Systems — Decision Distance and Bit Error Rate —

    Tomoko K. MATSUSHIMA  Masaki KAKUYAMA  Yuya MURATA  Yasuaki TERAMACHI  Shoichiro YAMASAKI  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E100-A No:10
      Page(s):
    2135-2145

    Several kinds of techniques for excellent multi-user interference (MUI) cancellation have been proposed for direct-detection synchronous optical code division multiple access (OCDMA) systems. All these techniques utilize modified prime sequence codes (MPSCs) as signature codes and can remove MUI errors efficiently. In this paper, the features of three typical MUI cancellers are studied and compared in detail. The authors defined the parameter “decision distance” to show the feature of MUI cancellers. The bit error rate performance of each canceller is investigated by computer simulation and compared with that of the basic on-off keying (OOK) scheme without cancellation. Then, we investigate the relationship between the decision distance and the bit error rate performance. It is shown that every canceller has a better bit error rate performance than the basic OOK scheme. Especially, the equal weight orthogonal (EWO) scheme, whose decision distance is the largest, has the best error resistance property of the three MUI cancellers. The results show that the decision distance is a useful index to evaluate the error resistance property of MUI cancellation schemes.

  • Delay Insertion Based P2PTV Traffic Localization Considering Peer's Relaying Capability

    Chitapong WECHTAISONG  Hiroaki MORINO  

     
    PAPER-Network

      Pubricized:
    2017/03/23
      Vol:
    E100-B No:10
      Page(s):
    1798-1806

    Recently, P2PTV is a popular application to deliver video streaming data over the Internet. On the overlay network, P2PTV applications create logical links between pairs of peers considering round trip time (RTT) without physical network consideration. P2PTV packets are shared over a network without localization awareness which is a serious problem for Internet Service Providers (ISPs). A delay-insertion-based traffic localization scheme was proposed for solving this problem. However, this scheme sometimes leads the newly joining peer to download streaming traffic from a local neighbor peer which has only scarce upload bandwidth. This paper proposes a novel scheme of delay-insertion-based traffic localization in which the router estimates relay capability to each relay peer candidate and leads the newly joining peer to connect to a neighbor peer with sufficient performance for relaying video data. Parameters were evaluated for the optimized condition in the relay capability estimation process. In addition, experiments conducted on a real network show that our proposed scheme can prevent the newly joining peer from downloading video data from peers with insufficient relay capability and maintain video quality close to normal in a P2PTV system while ensuring efficient traffic localization at the level of the Autonomous System (AS) network.

  • 5G Distributed Massive MIMO with Ultra-High Density Antenna Deployment in Low SHF Bands

    Tatsuki OKUYAMA  Satoshi SUYAMA  Jun MASHINO  Yukihiko OKUMURA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/03/10
      Vol:
    E100-B No:10
      Page(s):
    1921-1927

    In order to tackle rapidly increasing traffic, dramatic performance enhancements in radio access technologies (RATs) are required for fifth-generation (5G) mobile communication system. In 5G, small/semi-macro cells using Massive MIMO (M-MIMO) with much wider bandwidth in higher frequency bands are overlaid on macro cell with existing frequency band. Moreover, high density deployment of small/semi-macro cell is expected to improve areal capacity. However, in low SHF band (below 6GHz), antenna array size of M-MIMO is large so that it cannot be installed on some environments. Therefore, to improve system throughput on various use cases in 5G, we have proposed distributed Massive MIMO (DM-MIMO). DM-MIMO coordinates lots of distributed transmission points (TPs) that are located in ultra-high density (UHD). Furthermore, DM-MIMO uses various numbers of antenna elements for each TP. In addition, DM-MIMO with UHD-TPs can create user-centric virtual cells corresponding to user mobility, and design of flexible antenna deployment for DM-MIMO is applicable to various use cases. Then, some key parameters such as the number of the distributed TPs, the number of antenna elements for each TP, and proper distance between TPs, should be determined. This paper presents such parameters for 5G DM-MIMO with flexible antenna deployment under fixed total transmission power and constant total number of antenna elements. Computer simulations show that DM-MIMO can achieve more than 1.9 times higher system throughput than an M-MIMO system using 128 antenna elements.

  • An Energy-Efficient Task Scheduling for Near-Realtime Systems with Execution Time Variation

    Takashi NAKADA  Tomoki HATANAKA  Hiroshi UEKI  Masanori HAYASHIKOSHI  Toru SHIMIZU  Hiroshi NAKAMURA  

     
    PAPER-Software System

      Pubricized:
    2017/06/26
      Vol:
    E100-D No:10
      Page(s):
    2493-2504

    Improving energy efficiency is critical for embedded systems in our rapidly evolving information society. Near real-time data processing tasks, such as multimedia streaming applications, exhibit a common fact that their deadline periods are longer than their input intervals due to buffering. In general, executing tasks at lower performance is more energy efficient. On the other hand, higher performance is necessary for huge tasks to meet their deadlines. To minimize the energy consumption while meeting deadlines strictly, adaptive task scheduling including dynamic performance mode selection is very important. In this work, we propose an energy efficient slack-based task scheduling algorithm for such tasks by adapting to task size variations and applying DVFS with the help of statistical analysis. We confirmed that our proposal can further reduce the energy consumption when compared to oracle frame-based scheduling.

  • Efficient Similarity Search with a Pivot-Based Complete Binary Tree

    Yuki YAMAGISHI  Kazuo AOYAMA  Kazumi SAITO  Tetsuo IKEDA  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2017/07/04
      Vol:
    E100-D No:10
      Page(s):
    2526-2536

    This paper presents an efficient similarity search method utilizing as an index a complete binary tree (CBT) based on optimized pivots for a large-scale and high-dimensional data set. A similarity search method, in general, requires high-speed performance on both index construction off-line and similarity search itself online. To fulfill the requirement, we introduce novel techniques into an index construction and a similarity search algorithm in the proposed method for a range query. The index construction algorithm recursively employs the following two main functions, resulting in a CBT index. One is a pivot generation function that obtains one effective pivot at each node by efficiently maximizing a defined objective function. The other is a node bisection function that partitions a set of objects at a node into two almost equal-sized subsets based on the optimized pivot. The similarity search algorithm employs a three-stage process that narrows down candidate objects within a given range by pruning unnecessary branches and filtering objects in each stage. Experimental results on one million real image data set with high dimensionality demonstrate that the proposed method finds an exact solution for a range query at around one-quarter to half of the computational cost of one of the state-of-the-art methods, by using a CBT index constructed off-line at a reasonable computational cost.

  • An Approach to Detect Cavities in X-Ray Astronomical Images Using Granular Convolutional Neural Networks

    Zhixian MA  Jie ZHU  Weitian LI  Haiguang XU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2017/07/18
      Vol:
    E100-D No:10
      Page(s):
    2578-2586

    Detection of cavities in X-ray astronomical images has become a field of interest, since the flourishing studies on black holes and the Active Galactic Nuclei (AGN). In this paper, an approach is proposed to detect cavities in X-ray astronomical images using our newly designed Granular Convolutional Neural Network (GCNN) based classifiers. The raw data are firstly preprocessed to obtain images of the observed objects, i.e., galaxies or galaxy clusters. In each image, pixels are classified into three categories, (1) the faint backgrounds (BKG), (2) the cavity regions (CAV), and (3) the bright central gas regions (CNT). And the sample sets are then generated by dividing large images into subimages with a window size according to the cavities' scale. Since the number of BKG samples are far more than the other types, to achieve balanced training sets, samples from the major class are split into subsets, i.e., granule. Then a group of three-convolutional-layer granular CNN networks without subsampling layers are designed as the classifiers, and trained with the labeled granular sample sets. Finally, the trained GCNN classifiers are applied to new observations, so as to estimate the cavity regions with a voting strategy and locate them with elliptical profiles on the raw observation images. Experiments and applications of our approach are demonstrated on 40 X-ray astronomical observations retrieved from chandra Data Archive (CDA). Comparisons among our approach, the β-model fitting and the Unsharp Masking (UM) methods were also performed, which prove our approach was more accurate and robust.

  • Completely Independent Spanning Trees on 4-Regular Chordal Rings

    Jou-Ming CHANG  Hung-Yi CHANG  Hung-Lung WANG  Kung-Jui PAI  Jinn-Shyong YANG  

     
    LETTER

      Vol:
    E100-A No:9
      Page(s):
    1932-1935

    Given a graph G, a set of spanning trees of G are completely independent spanning trees (CISTs for short) if for any vertices x and y, the paths connecting them on these trees have neither vertex nor edge in common, except x and y. Hasunuma (2001, 2002) first introduced the concept of CISTs and conjectured that there are k CISTs in any 2k-connected graph. Later on, this conjecture was unfortunately disproved by Péterfalvi (2012). In this note, we show that Hasunuma's conjecture holds for graphs restricted in the class of 4-regular chordal rings CR(n,d), where both n and d are even integers.

  • Effect of Magnetic Blow-Out and Air Flow on Break Arcs Occurring between Silver Electrical Contacts with Copper Runners

    Haruki MIYAGAWA  Junya SEKIKAWA  

     
    PAPER

      Vol:
    E100-C No:9
      Page(s):
    709-715

    Arc runners are fixed on silver electrical contacts. Break arcs are generated between the contacts in a 450VDC circuit. Break arcs are magnetically blown-out and air is blown to the break arcs. The air flow was not used to our previous reports with runners. Circuit current when contacts are closed is 10A. Flow rate of air Q is changed from 1 to 10L/min. Supply voltage E is changed from 200V to 450V. The following results are shown. Arc duration D tends to decrease with increasing flow rate Q. The number of reignitions N increases with increasing supply voltage E for each flow rate Q. The number of reignitions is the least when the flow rate Q is 2L/min.

  • Low-Latency Low-Cost Architecture for Square and Cube Roots

    Jihyuck JO  In-Cheol PARK  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:9
      Page(s):
    1951-1955

    This paper presents a low-latency, low-cost architecture for computing square and cube roots in the fixed-point format. The proposed architecture is designed based on a non-iterative root calculation scheme to achieve fast computations. While previous non-iterative root calculators are restricted to a square-root operation due to the limitation of their mathematical property, the root computation is generalized in this paper to apply an approximation method to the non-iterative scheme. On top of that, a recurrent method is proposed to select parameters, which enables us to reduce the table size while keeping the maximum relative error value low. Consequently, the proposed root calculator can support both square and cube roots at the expense of small delay and low area overheads. This extension can be generalized to compute the nth roots, where n is a positive integer.

  • Technical Features and Approaches on Optical Access Networks for Various Applications Open Access

    Toshinori TSUBOI  Tomohiro TANIGUCHI  Tetsuya YOKOTANI  

     
    INVITED PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1606-1613

    This paper describes optical access networks focusing on passive optical network (PON) technologies from a technical point of view. Optical access networks have been applied to fiber-to-the-home as a driving force of broadband services and their use will continue growing in the near future. They will be applied as an aggregate component of broadband wireless networks. This paper also addresses solutions for their application.

  • Optical Networking Paradigm: Past, Recent Trends and Future Directions Open Access

    Eiji OKI  Naoya WADA  Satoru OKAMOTO  Naoaki YAMANAKA  Ken-ichi SATO  

     
    INVITED SURVEY PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1564-1580

    This paper presents past and recent trends of optical networks and addresses the future directions. First, we describe path networks with the historical backgrounds and trends. path networks have advanced by using various multiplexing technologies. They include time-division multiplexing (TDM), asynchronous transfer mode (ATM), and wavelength-division multiplexing (WDM). ATM was later succeeded to multi-protocol label switching (MPLS). Second, we present generalized MPLS technologies (GMPLS). In GMPLS, the label concept of MPLS is extended to other labels used in TDM, WDM, and fiber networks. GMPLS enables network operators to serve networks deployed by different technologies with a common protocol suite of GMPLS. Third, we describe multi-layer traffic engineering and a path computation element (PCE). Multi-layer traffic engineering designs and controls networks considering resource usages of more than one layer. This leads to use network resources more efficiently than the single-layer traffic engineering adopted independently for each layer. PCE is defined as a network element that computes paths, which are used for traffic engineering. Then, we address software-defined networks, which put the designed network functions into the programmable data plane by way of the management plane. We describe the evaluation from GMPLS to software defined networking (SDN) and transport SDN. Fifth, we describe the advanced devices and switches for optical networks. Finally, we address advances in networking technologies and future directions on optical networking.

  • Enhancing Purchase Behavior Prediction with Temporally Popular Items

    Chen CHEN  Chunyan HOU  Jiakun XIAO  Yanlong WEN  Xiaojie YUAN  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/05/30
      Vol:
    E100-D No:9
      Page(s):
    2237-2240

    In the era of e-commerce, purchase behavior prediction is one of the most important issues to promote both online companies' sales and the consumers' experience. The previous researches usually use traditional features based on the statistics and temporal dynamics of items. Those features lead to the loss of detailed items' information. In this study, we propose a novel kind of features based on temporally popular items to improve the prediction. Experiments on the real-world dataset have demonstrated the effectiveness and the efficiency of our proposed method. Features based on temporally popular items are compared with traditional features which are associated with statistics, temporal dynamics and collaborative filter of items. We find that temporally popular items are an effective and irreplaceable supplement of traditional features. Our study shed light on the effectiveness of the combination of popularity and temporal dynamics of items which can widely used for a variety of recommendations in e-commerce sites.

3201-3220hit(20498hit)