The search functionality is under construction.

Author Search Result

[Author] Masanori HAYASHIKOSHI(5hit)

1-5hit
  • An Energy-Efficient Task Scheduling for Near-Realtime Systems with Execution Time Variation

    Takashi NAKADA  Tomoki HATANAKA  Hiroshi UEKI  Masanori HAYASHIKOSHI  Toru SHIMIZU  Hiroshi NAKAMURA  

     
    PAPER-Software System

      Pubricized:
    2017/06/26
      Vol:
    E100-D No:10
      Page(s):
    2493-2504

    Improving energy efficiency is critical for embedded systems in our rapidly evolving information society. Near real-time data processing tasks, such as multimedia streaming applications, exhibit a common fact that their deadline periods are longer than their input intervals due to buffering. In general, executing tasks at lower performance is more energy efficient. On the other hand, higher performance is necessary for huge tasks to meet their deadlines. To minimize the energy consumption while meeting deadlines strictly, adaptive task scheduling including dynamic performance mode selection is very important. In this work, we propose an energy efficient slack-based task scheduling algorithm for such tasks by adapting to task size variations and applying DVFS with the help of statistical analysis. We confirmed that our proposal can further reduce the energy consumption when compared to oracle frame-based scheduling.

  • A Dual-Mode Sensing Scheme of Capacitor-Coupled EEPROM Cell

    Masanori HAYASHIKOSHI  Hideto HIDAKA  Kazutami ARIMOTO  Kazuyasu FUJISHIMA  

     
    PAPER

      Vol:
    E75-C No:4
      Page(s):
    467-471

    This paper describes a dual-mode sensing (DMS) scheme of a capacitor-coupled EEPROM cell. A new memory cell structure and a new sensing scheme are proposed and estimated. The new memory cell combines an EEPROM cell with a DRAM cell. The DMS Scheme utilizes the charge-mode sensing of the DRAM cell in addition to the current-mode sensing of the EEPROM cell. Using this DMS technique, the sensing speed can be enhanced by 36% at a cell current of 15 µA by virtue of the additional charge-mode sensing. Furthermore, the stress applied to the tunnel oxide of the memory transistor can be relieved by decreasing the programming voltage and shortening the programming time. Therefore, with this memory cell structure and sensing scheme, it is possible to realize high-speed sensing in low-voltage operation and high endurance.

  • An Energy-Efficient Task Scheduling for Near Real-Time Systems on Heterogeneous Multicore Processors

    Takashi NAKADA  Hiroyuki YANAGIHASHI  Kunimaro IMAI  Hiroshi UEKI  Takashi TSUCHIYA  Masanori HAYASHIKOSHI  Hiroshi NAKAMURA  

     
    PAPER-Software System

      Pubricized:
    2019/11/01
      Vol:
    E103-D No:2
      Page(s):
    329-338

    Near real-time periodic tasks, which are popular in multimedia streaming applications, have deadline periods that are longer than the input intervals thanks to buffering. For such applications, the conventional frame-based schedulings cannot realize the optimal scheduling due to their shortsighted deadline assumptions. To realize globally energy-efficient executions of these applications, we propose a novel task scheduling algorithm, which takes advantage of the long deadline period. We confirm our approach can take advantage of the longer deadline period and reduce the average power consumption by up to 18%.

  • A Cost-Effective 1T-4MTJ Embedded MRAM Architecture with Voltage Offset Self-Reference Sensing Scheme for IoT Applications

    Masanori HAYASHIKOSHI  Hiroaki TANIZAKI  Yasumitsu MURAI  Takaharu TSUJI  Kiyoshi KAWABATA  Koji NII  Hideyuki NODA  Hiroyuki KONDO  Yoshio MATSUDA  Hideto HIDAKA  

     
    PAPER

      Vol:
    E102-C No:4
      Page(s):
    287-295

    A 1-Transistor 4-Magnetic Tunnel Junction (1T-4MTJ) memory cell has been proposed for field type of Magnetic Random Access Memory (MRAM). Proposed 1T-4MTJ memory cell array is achieved 44% higher density than that of conventional 1T-1MTJ thanks to the common access transistor structure in a 4-bit memory cell. A self-reference sensing scheme which can read out with write-back in four clock cycles has been also proposed. Furthermore, we add to estimate with considering sense amplifier variation and show 1T-4MTJ cell configuration is the best solution in IoT applications. A 1-Mbit MRAM test chip is designed and fabricated successfully using 130-nm CMOS process. By applying 1T-4MTJ high density cell and partially embedded wordline driver peripheral into the cell array, the 1-Mbit macro size is 4.04 mm2 which is 35.7% smaller than the conventional one. Measured data shows that the read access is 55 ns at 1.5 V typical supply voltage and 25C. Combining with conventional high-speed 1T-1MTJ caches and proposed high-density 1T-4MTJ user memories is an effective on-chip hierarchical non-volatile memory solution, being implemented for low-power MCUs and SoCs of IoT applications.

  • An Experimental 16 kbit Nonvolatile Random Access Memory

    Kazuo KOBAYASHI  Yasushi TERADA  Masanori HAYASHIKOSHI  Takeshi NAKAYAMA  Hideaki ARIMA  Takayuki MATSUKAWA  Tsutomu YOSHIHARA  

     
    PAPER-Integrated Electronics

      Vol:
    E73-E No:2
      Page(s):
    260-264

    High density and high speed nonvolatile random access memory is described. Using the conventional floating gate EEPROM process, a dynamic RAM cell has been merged into an EEPROM cell. Data stored on the DRAM cell can be backed up by the EEPROM cell. The data transfer between the DRAM and the EEPROM is executed simultaneously on all memory cells on a same word line. An experimental 16 kbit memory has been manufactured by 1.5 µm design rule CMOS process. The cell size is 17 µm17 µm and the chip size is 57.2 mm3.75 mm. The address access time of 100 ns and the page read access time of 20 ns have been achieved. A nonvolatile CAM (Content Addressable Memory) cell will also be proposed.