The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

3901-3920hit(20498hit)

  • New Results on the Boolean Functions That Can Be Expressed as the Sum of Two Bent Functions

    Longjiang QU  Shaojing FU  Qingping DAI  Chao LI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E99-A No:8
      Page(s):
    1584-1590

    In this paper, we study the problem of a Boolean function can be represented as the sum of two bent functions. This problem was recently presented by N. Tokareva when studying the number of bent functions [27]. Firstly, several classes of functions, such as quadratic Boolean functions, Maiorana-MacFarland bent functions, many partial spread functions etc, are proved to be able to be represented as the sum of two bent functions. Secondly, methods to construct such functions from low dimension ones are also introduced. N. Tokareva's main hypothesis is proved for n≤6. Moreover, two hypotheses which are equivalent to N. Tokareva's main hypothesis are presented. These hypotheses may lead to new ideas or methods to solve this problem. Finally, necessary and sufficient conditions on the problem when the sum of several bent functions is again a bent function are given.

  • A Short-Time Three-Phase Single-Rail Precharge Logic against Differential Power Analysis

    Wenyi TANG  Song JIA  Yuan WANG  

     
    PAPER-Electronic Circuits

      Vol:
    E99-C No:8
      Page(s):
    956-962

    Side channel attacks (SCAs) on security devices have become a major concern for system security. Existing SCA countermeasures are costly in terms of area and power consumption. This paper presents a novel differential power analysis (DPA) countermeasure referred to as short-time three-phase single-rail precharge logic (STSPL). The proposed logic is based on a single-rail three-phase operation scheme providing effective DPA-resistance with low cost. In the scheme, a controller is inserted to discharge logic gates by reusing evaluation paths to achieve more balanced power consumption. This reduces the latency between different phases, increasing the difficult of the adversary to conduct DPA, compared with the state-of-the-art DPA-resistance logics. To verify the chip's power consumption in practice, a 4-bit ripple carry adder and a 4-bit inverter of AES-SBOX were implemented. The testing and simulation results of DPA attacks prove the security and efficiency of the proposed logic.

  • Identifying Important Tweets by Considering the Potentiality of Neurons

    Ryozo KITAJIMA  Ryotaro KAMIMURA  Osamu UCHIDA  Fujio TORIUMI  

     
    LETTER

      Vol:
    E99-A No:8
      Page(s):
    1555-1559

    The purpose of this paper is to show that a new type of information-theoretic learning method called “potential learning” can be used to detect and extract important tweets among a great number of redundant ones. In the experiment, we used a dataset of 10,000 tweets, among which there existed only a few important ones. The experimental results showed that the new method improved overall classification accuracy by correctly identifying the important tweets.

  • Array Correlation Matrix Element Properties and Their Application to Low-Cost DOA Estimation

    Koichi ICHIGE  Yu IWABUCHI  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:8
      Page(s):
    1859-1866

    We study the correlation matrix element properties in array signal processing and apply them to a Direction-Of-Arrival (DOA) estimation problem of coherent or highly-correlated sources for a Uniform Linear Array (ULA). The proposed algorithm is generally based on the relation between the elements of the array correlation matrix and does not need an eigendecomposition, iteration, or angular peak-search. The performance of the proposed method was evaluated through a computer simulation.

  • MDMA: A Multi-Data and Multi-ACK Verified Selective Forwarding Attack Detection Scheme in WSNs

    Anfeng LIU  Xiao LIU  He LI  Jun LONG  

     
    PAPER

      Pubricized:
    2016/05/31
      Vol:
    E99-D No:8
      Page(s):
    2010-2018

    In this paper, a multi-data and multi-ACK verified selective forwarding attacks (SFAs) detection scheme is proposed for containing SFAs. In our scheme, each node (in addition to the nodes in the hotspots area) generates multiple acknowledgement (ACK) message for each received packet to confirm the normal packet transmission. In multiple ACK message, one ACK is returned along the data forwarding path, other ACKs are returned along different routing paths, and thus malicious nodes can be located accurately. At the same time, source node send multiple data routing, one is primary data routing, the others are backup data routing. Primary data is routed to sink directly, but backup data is routed to nodes far from sink, and then waits for the returned ACK of sink when primary data is routed to sink. If a node doesn't receive the ACK, the backup data is routed to sink, thus the success rate of data transmission and lifetime can be improved. For this case, the MDMA scheme has better potential to detect abnormal packet loss and identify suspect nodes as well as resilience against attack. Theoretical analysis and experiments show that MDMA scheme has better ability for ensuring success rate of data transmission, detecting SFA and identifying malicious nodes.

  • Linear Complexity of New Generalized Cyclotomic Sequences of Order Two with Odd Length

    Yu-qian ZHOU  Fei GAO  Jie ZHANG  Qian-yan WEN  Zu-ling CHANG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E99-A No:8
      Page(s):
    1639-1644

    Based on the generalized cyclotomy of order two with respect to n=p1e1+1p2e2+1…ptet+1, where p1, p2, …,pt are pairwise distinct odd primes and e1, e2,…, et are non-negative integers satisfying gcd (piei (pi-1), pjej (pj-1)) = 2 for all i ≠ j, this paper constructs a new family of generalized cyclotomic sequences of order two with length n and investigates their linear complexity. In the view of cascade theory, this paper obtains the linear complexity of a representative sequence.

  • CloudS: A Multi-Cloud Storage System with Multi-Level Security

    Lu SHEN  Shifang FENG  Jinjin SUN  Zhongwei LI  Ming SU  Gang WANG  Xiaoguang LIU  

     
    PAPER

      Pubricized:
    2016/05/31
      Vol:
    E99-D No:8
      Page(s):
    2036-2043

    With the increase of data quantity, people have begun to attach importance to cloud storage. However, numerous security accidents occurred to cloud servers recently, thus triggering thought about the security of traditional single cloud. In other words, traditional single cloud can't ensure the privacy of users' data to a certain extent. To solve those security issues, multi-cloud systems which spread data over multiple cloud storage servers emerged. They employ a series of erasure codes and other keyless dispersal algorithms to achieve high-level security. But non-systematic codes like RS require relatively complex arithmetic, and systematic codes have relatively weaker security. In terms of keyless dispersal algorithms, they avoid key management issues but not suit to complete parallel optimization or deduplication which is important to limited cloud storage resources. So in this paper, we design a new kind of XOR-based non-systematic erasure codes - Privacy Protecting Codes (PPC) and a SIMD encoding algorithm for better performance. To achieve higher-level security, we put forward a novel deduplication-friendly dispersal algorithm called Hash Cyclic Encryption-PPC (HCE-PPC) which can achieve complete parallelization. With these new technologies, we present a multi-cloud storage system called CloudS. For better user experience and the tradeoffs between security and performance, CloudS provides multiple levels of security by various combinations of compression, encryption and coding schemes. We implement CloudS as a web application which doesn't require users to perform complicated operations on local.

  • SNGR: Scalable Name-Based Geometric Routing for ICN

    Yanbin SUN  Yu ZHANG  Binxing FANG  Hongli ZHANG  

     
    PAPER-Network

      Vol:
    E99-B No:8
      Page(s):
    1835-1845

    Information-Centric Networking (ICN) treats contents as first class citizens and adopts name-based routing for content distribution and retrieval. Content names rather than IP addresses are directly used for routing. However, due to the location-independent naming and the huge namespace, name-based routing faces scalability and efficiency issues including large routing tables and high path stretches. This paper proposes a universal Scalable Name-based Geometric Routing scheme (SNGR), which is a careful synthesis of geometric routing and name resolution. To provide scalable and efficient underlying routing, a universal geometric routing framework (GRF) is proposed. Any geometric routing scheme can be used directly for name resolution based on GRF. To implement an overlay name resolution system, SNGR utilizes a bi-level grouping design. With this design, a resolution node that is close to the consumer can always be found. Our theoretical analyses guarantee the performance of SNGR, and experiments show that SNGR outperforms similar routing schemes in terms of node state, path stretch, and reliability.

  • Spectral Features Based on Local Hu Moments of Gabor Spectrograms for Speech Emotion Recognition

    Huawei TAO  Ruiyu LIANG  Cheng ZHA  Xinran ZHANG  Li ZHAO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2016/05/06
      Vol:
    E99-D No:8
      Page(s):
    2186-2189

    To improve the recognition rate of the speech emotion, new spectral features based on local Hu moments of Gabor spectrograms are proposed, denoted by GSLHu-PCA. Firstly, the logarithmic energy spectrum of the emotional speech is computed. Secondly, the Gabor spectrograms are obtained by convoluting logarithmic energy spectrum with Gabor wavelet. Thirdly, Gabor local Hu moments(GLHu) spectrograms are obtained through block Hu strategy, then discrete cosine transform (DCT) is used to eliminate correlation among components of GLHu spectrograms. Fourthly, statistical features are extracted from cepstral coefficients of GLHu spectrograms, then all the statistical features form a feature vector. Finally, principal component analysis (PCA) is used to reduce redundancy of features. The experimental results on EmoDB and ABC databases validate the effectiveness of GSLHu-PCA.

  • Design and Deployment of Enhanced VNode Infrastructure — Deeply Programmable Network Virtualization Open Access

    Kazuhisa YAMADA  Akihiro NAKAO  Yasusi KANADA  Yoshinori SAIDA  Koichiro AMEMIYA  Yuki MINAMI  

     
    INVITED PAPER-Network

      Vol:
    E99-B No:8
      Page(s):
    1629-1637

    We introduce the design and deployment of the latest version of the VNode infrastructure, VNode-i. We present new extended VNode-i functions that offer high performance and provide convenient deep programmability to network developers. We extend resource abstraction to the transport network and achieve highly precise slice measurement for resource elasticity. We achieve precise resource isolation for VNode-i. We achieve coexistence of high performance and programmability. We also enhance AGW functions. In addition, we extend network virtualization from the core network to edge networks and terminals. In evaluation experiments, we deploy the enhanced VNode-i on the JGN-X testbed and evaluate its performance. We successfully create international federation slices across VNode-i, GENI, and Fed4FIRE. We also present experimental results on video streaming on a federated slice across VNode-i and GENI. Testbed experiments confirm the practicality of the enhanced VNode-i.

  • Estimation of the Acoustic Time Delay of Arrival by Adaptive Eigenvalue Decomposition with a Proportionate Step-Size Control and Direct-Path Constraint

    Seokjin LEE  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:8
      Page(s):
    1622-1627

    Estimation of the time delay of arrival (TDOA) problem is important to acoustic source localization. The TDOA estimation problem is defined as finding the relative delay between several microphone signals for the direct sound. To estimate TDOA, the generalized cross-correlation (GCC) method is the most frequently used, but it has a disadvantage in terms of reverberant environments. In order to overcome this problem, the adaptive eigenvalue decomposition (AED) method has been developed, which estimates the room transfer function and finds the direct-path delay. However, the algorithm does not take into account the fact that the room transfer function is a sparse channel, and so sometimes the estimated transfer function is too dense, resulting in failure to exact direct-path and delay. In this paper, an enhanced AED algorithm that makes use of a proportionate step-size control and a direct-path constraint is proposed instead of a constant step size and the L2-norm constraint. The simulation results show that the proposed algorithm has enhanced performance as compared to both the conventional AED method and the phase-transform (PHAT) algorithm.

  • Real-Time Joint Channel and Hyperparameter Estimation Using Sequential Monte Carlo Methods for OFDM Mobile Communications

    Junichiro HAGIWARA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:8
      Page(s):
    1655-1668

    This study investigates a real-time joint channel and hyperparameter estimation method for orthogonal frequency division multiplexing mobile communications. The channel frequency response of the pilot subcarrier and its fixed hyperparameters (such as channel statistics) are estimated using a Liu and West filter (LWF), which is based on the state-space model and sequential Monte Carlo method. For the first time, to our knowledge, we demonstrate that the conventional LWF biases the hyperparameter due to a poor estimate of the likelihood caused by overfitting in noisy environments. Moreover, this problem cannot be solved by conventional smoothing techniques. For this, we modify the conventional LWF and regularize the likelihood using a Kalman smoother. The effectiveness of the proposed method is confirmed via numerical analysis. When both of the Doppler frequency and delay spread hyperparameters are unknown, the conventional LWF significantly degrades the performance, sometimes below that of least squares estimation. By avoiding the hyperparameter estimation failure, our method outperforms the conventional approach and achieves good performance near the lower bound. The coding gain in our proposed method is at most 10 dB higher than that in the conventional LWF. Thus, the proposed method improves the channel and hyperparameter estimation accuracy. Derived from mathematical principles, our proposal is applicable not only to wireless technology but also to a broad range of related areas such as machine learning and econometrics.

  • Modelling Load Balancing Mechanisms in Self-Optimising 4G Mobile Networks with Elastic and Adaptive Traffic

    Mariusz GŁĄBOWSKI  Sławomir HANCZEWSKI  Maciej STASIAK  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E99-B No:8
      Page(s):
    1718-1726

    This article describes an approximate model of a group of cells in the wireless 4G network with implemented load balancing mechanism. An appropriately modified model of Erlang's Ideal Grading is used to model this group of cells. The model makes it possible to take into account limited availability of resources of individual cells to multi-rate elastic and adaptive traffic streams generated by Erlang and Engset sources. The developed solution allows the basic traffic characteristics in the considered system to be determined, i.e. the occupancy distribution and the blocking probability. Because of the approximate nature of the proposed model, the results obtained based on the model were compared with the results of a digital simulation. The present study validates the adopted assumptions of the proposed model.

  • Data Association in Bistatic MIMO of T/R-R Mode: Basis Decision and Performance Analysis

    Xiang DUAN  Zishu HE  Hongming LIU  Jun LI  

     
    PAPER-Digital Signal Processing

      Vol:
    E99-A No:8
      Page(s):
    1567-1575

    Bistatic multi-input multi-output (MIMO) radar has the capability of measuring the transmit angle from the receiving array, which means the existence of information redundancy and benefits data association. In this paper, a data association decision for bistatic MIMO radar is proposed and the performance advantages of bistatic MIMO radar in data association is analyzed and evaluated. First, the parameters obtained by receiving array are sent to the association center via coordinate conversion. Second, referencing the nearest neighbor association (NN) algorithm, an improved association decision is proposed with the transmit angle and target range as association statistics. This method can evade the adverse effects of the angle system errors to data association. Finally, data association probability in the presence of array directional error is derived and the correctness of derivation result is testified via Monte Carlo simulation experiments. Besides that performance comparison with the conventional phased array radar verifies the excellent performance of bistatic MIMO Radar in data association.

  • A Prediction-Based Approach to Moving-Phenomenon Monitoring Using Mobile Sensor Nodes

    Duc Van LE  Hoon OH  Seokhoon YOON  

     
    PAPER-Network

      Vol:
    E99-B No:8
      Page(s):
    1754-1762

    Deploying a group of mobile sensor (MS) nodes to monitor a moving phenomenon in an unknown and open area includes a lot of challenges if the phenomenon moves quickly and due to the limited capabilities of MS nodes in terms of mobility, sensing and communication ranges. To address these challenges and achieve a high weighted sensing coverage, in this paper, we propose a new algorithm for moving-phenomenon monitoring, namely VirFID-MP (Virtual Force (VF)-based Interest-Driven phenomenon monitoring with Mobility Prediction). In VirFID-MP, the future movement of the phenomenon is first predicted using the MS nodes' movement history data. Then, the prediction information is used to calculate a virtual force, which is utilized to speed up MS nodes toward the moving phenomenon. In addition, a prediction-based oscillation-avoidance algorithm is incorporated with VirFID-MP movement control to reduce the nodes' energy consumption. Our simulation results show that VirFID-MP outperforms original VirFID schemes in terms of weighted coverage efficiency and energy consumption.

  • Numerical Evaluation of Effect of Using UTM Grid Maps on Emergency Response Performance — A Case of Information-Processing Training at an Emergency Operation Center in Tagajo City, Miyagi Prefecture —

    Shosuke SATO  Rui NOUCHI  Fumihiko IMAMURA  

     
    LETTER

      Vol:
    E99-A No:8
      Page(s):
    1560-1566

    It is qualitatively considered that emergency information processing by using UTM grids is effective in generating COP (Common Operational Pictures). Here, we conducted a numerical evaluation based on emergency information-processing training to examine the efficiency of the use of UTM grid maps by staff at the Tagajo City Government office. The results of the demonstration experiment were as follows: 1) The time required for information propagation and mapping with UTM coordinates was less than that with address text consisting of area name and block number. 2) There was no measurable difference in subjective estimates of the training performance of participants with or without the use of UTM grids. 3) Fear of real emergency responses decreased among training participants using UTM grids. 4) Many of the negative free answers on a questionnaire evaluation of participants involved requests regarding the reliability and operability of UTM tools.

  • Three Gait Oscillations Switchable by a Single Parameter on Hard-Wired Central Pattern Generator Hardware Network

    Akihiro MARUYAMA  Kentaro TANI  Shigehito TANAHASHI  Atsuhiko IIJIMA  Yoshinobu MAEDA  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E99-A No:8
      Page(s):
    1600-1608

    We present a hard-wired central patter generator (CPG) hardware network that reproduces the periodic oscillations of the typical gaits, namely, walk, trot, and bound. Notably, the three gaits are generated by a single parameter, i.e., the battery voltage EMLR, which acts like a signal from the midbrain's locomotor region. One CPG is composed of two types of hardware neuron models, reproducing neuronal bursting and beating (action potentials), and three types of hardware synapse models: a gap junction, excitatory and inhibitory synapses. When four hardware CPG models were coupled into a Z4 symmetry network in a previous study [22], two neuronal oscillation patterns corresponding to four-legged animal gaits (walk and bound) were generated by manipulating a single control parameter. However, no more than two neuronal oscillation patterns have been stably observed on a hard-wired four-CPG hardware network. In the current study, we indicate that three neuronal oscillation patterns (walk, trot, and bound) can be generated by manipulating a single control parameter on a hard-wired eight-CPG (Z4 × Z2 symmetry) hardware network.

  • An Error-Propagation Minimization Based Signal Selection Scheme for QRM-MLD

    Ilmiawan SHUBHI  Hidekazu MURATA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:7
      Page(s):
    1566-1576

    Recently, multi-user multiple-input multiple-output (MU-MIMO) systems are being widely studied. For interference cancellation, MU-MIMO commonly uses spatial precoding techniques. These techniques, however, require the transmitters to have perfect knowledge of the downlink channel state information (CSI), which is hard to achieve in high mobility environments. Instead of spatial precoding, a collaborative interference cancellation (CIC) technique can be implemented for these environments. In CIC, mobile stations (MSs) collaborate and share their received signals to increase the demultiplexing capabilities. To obtain efficient signal-exchange between collaborating users, signal selection can be implemented. In this paper, a signal selection scheme suitable for a QRM-MLD algorithm is proposed. The proposed scheme uses the minimum Euclidean distance criterion to obtain an optimum bit error rate (BER) performance. Numerical results obtained through computer simulations show that the proposed scheme is able to provide BER performance near to that of MLD even when the number of candidates in QRM-MLD is relatively small. In addition, the proposed scheme is feasible to implement owing to its low computational complexity.

  • Efficient Aging-Aware SRAM Failure Probability Calculation via Particle Filter-Based Importance Sampling

    Hiromitsu AWANO  Masayuki HIROMOTO  Takashi SATO  

     
    PAPER

      Vol:
    E99-A No:7
      Page(s):
    1390-1399

    An efficient Monte Carlo (MC) method for the calculation of failure probability degradation of an SRAM cell due to negative bias temperature instability (NBTI) is proposed. In the proposed method, a particle filter is utilized to incrementally track temporal performance changes in an SRAM cell. The number of simulations required to obtain stable particle distribution is greatly reduced, by reusing the final distribution of the particles in the last time step as the initial distribution. Combining with the use of a binary classifier, with which an MC sample is quickly judged whether it causes a malfunction of the cell or not, the total number of simulations to capture the temporal change of failure probability is significantly reduced. The proposed method achieves 13.4× speed-up over the state-of-the-art method.

  • Defending against DDoS Attacks under IP Spoofing Using Image Processing Approach

    Tae Hwan KIM  Dong Seong KIM  Hee Young JUNG  

     
    PAPER-Internet

      Vol:
    E99-B No:7
      Page(s):
    1511-1522

    This paper presents a novel defense scheme for DDoS attacks that uses an image processing method. This scheme especially focused on the prevalence of adjacent neighbor spoofing, called subnet spoofing. It is rarely studied and there is few or no feasible approaches than other spoofing attacks. The key idea is that a “DDoS attack with IP spoofing” is represented as a specific pattern such as a “line” on the spatial image planes, which can be recognized through an image processing technique. Applying the clustering technique to the lines makes it possible to identify multiple attack source networks simultaneously. For the identified networks in which the zombie hosts reside, we then employ a signature-based pattern extraction algorithm, called a pivoted movement, and the DDoS attacks are filtered by correlating the IP and media access control pairing signature. As a result, this proposed scheme filters attacks without disturbing legitimate traffic. Unlike previous IP traceback schemes such as packet marking and path fingerprinting, which try to diagnose the entire attack path, our proposed scheme focuses on identifying only the attack source. Our approach can achieve an adaptive response to DDoS attacks, thereby mitigating them at the source, while minimizing the disruption of legitimate traffic. The proposed scheme is analyzed and evaluated on the IPv4 and IPv6 network topology from CAIDA, the results of which show its effectiveness.

3901-3920hit(20498hit)