The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

4021-4040hit(20498hit)

  • A 10-bit 20-MS/s Asynchronous SAR ADC with Meta-Stability Detector Using Replica Comparators

    Sang-Min PARK  Yeon-Ho JEONG  Yu-Jeong HWANG  Pil-Ho LEE  Yeong-Woong KIM  Jisu SON  Han-Yeol LEE  Young-Chan JANG  

     
    BRIEF PAPER

      Vol:
    E99-C No:6
      Page(s):
    651-654

    A 10-bit 20-MS/s asynchronous SAR ADC with a meta-stability detector using replica comparators is proposed. The proposed SAR ADC with the area of 0.093mm2 is implemented using a 130-nm CMOS process with a 1.2-V supply. The measured peak ENOBs for the full rail-to-rail differential input signal is 9.6bits.

  • Well-Shaped Microelectrode Array Structure for High-Density CMOS Amperometric Electrochemical Sensor Array

    Kiichi NIITSU  Tsuyoshi KUNO  Masayuki TAKIHI  Kazuo NAKAZATO  

     
    BRIEF PAPER

      Vol:
    E99-C No:6
      Page(s):
    663-666

    In this study, a well-shaped microelectrode array (MEA) for fabricating a high-density complementary metal-oxide semiconductor amperometric electrochemical sensor array was designed and verified. By integrating an auxiliary electrode with the well-shaped structure of the MEA, the footprint was reduced and high density and high resolution were also achieved. The results of three-dimensional electrochemical simulations confirmed the effectiveness of the proposed MEA structure and possibility of increasing the density to four times than that achieved by the conventional two-dimensional structure.

  • Error Propagation Analysis for Single Event Upset considering Masking Effects on Re-Convergent Path

    Go MATSUKAWA  Yuta KIMI  Shuhei YOSHIDA  Shintaro IZUMI  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E99-A No:6
      Page(s):
    1198-1205

    As technology nodes continue to shrink, the impact of radiation-induced soft error on processor reliability increases. Estimation of processor reliability and identification of vulnerable flip-flops requires accurate soft error rate (SER) analysis techniques. This paper presents a proposal for a soft error propagation analysis technique. We specifically examine single event upset (SEU) occurring at a flip-flop in sequential circuits. When SEUs propagate in sequential circuits, the faults can be masked temporally and logically. Conventional soft error propagation analysis techniques do not consider error convergent timing on re-convergent paths. The proposed technique can analyze soft error propagation while considering error-convergent timing on a re-convergent path by combinational analysis of temporal and logical effects. The proposed technique also considers the case in which the temporal masking is disabled with an enable signal of the erroneous flip-flop negated. Experimental results show that the proposed technique improves inaccuracy by 70.5%, on average, compared with conventional techniques using ITC 99 and ISCAS 89 benchmark circuits when the enable probability is 1/3, while the runtime overhead is only 1.7% on average.

  • High-Throughput Rapid Single-Flux-Quantum Circuit Implementations for Exponential and Logarithm Computation Using the Radix-2 Signed-Digit Representation

    Masamitsu TANAKA  Kazuyoshi TAKAGI  Naofumi TAKAGI  

     
    PAPER

      Vol:
    E99-C No:6
      Page(s):
    703-709

    We present circuit implementations for computing exponentials and logarithms suitable for rapid single-flux-quantum (RSFQ) logic. We propose hardware algorithms based on the sequential table-lookup (STL) method using the radix-2 signed-digit representation that achieve high-throughput, digit-serial calculations. The circuits are implemented by processing elements formed in systolic-array-like, regularly-aligned pipeline structures. The processing elements are composed of adders, shifters, and readouts of precomputed constants. The iterative calculations are fully overlapped, and throughputs approach the maximum throughput of serial processing. The circuit size for calculating significand parts is estimated to be approximately 5-10 times larger than that of a bit-serial floating-point adder or multiplier.

  • Performance of All-Optical Amplify-and-Forward WDM/FSO Relaying Systems over Atmospheric Dispersive Turbulence Channels

    Phuc V. TRINH  Ngoc T. DANG  Truong C. THANG  Anh T. PHAM  

     
    PAPER

      Vol:
    E99-B No:6
      Page(s):
    1255-1264

    This paper newly proposes and theoretically analyzes the performance of multi-hop free-space optical (FSO) systems employing optical amplify-and-forward (OAF) relaying technique and wavelength division multiplexing (WDM). The proposed system can provide a low cost, low latency, high flexibility, and large bandwidth access network for multiple users in areas where installation of optical fiber is unfavorable. In WDM/FSO systems, WDM channels suffer from the interchannel crosstalk while FSO channels can be severely affected by the atmospheric turbulence. These impairments together with the accumulation of background and amplifying noises over multiple relays significantly degrade the overall system performance. To deal with this problem, the use of the M-ary pulse position modulation (M-PPM) together with the OAF relaying technique is advocated as a powerful remedy to mitigate the effects of atmospheric turbulence. For the performance analysis, we use a realistic model of Gaussian pulse propagation to investigate major atmospheric effects, including signal turbulence and pulse broadening. We qualitatively discuss the impact of various system parameters, including the required average transmitted powers per information bit corresponding to specific values of bit error rate (BER), transmission distance, number of relays, and turbulence strength. Our numerical results are also thoroughly validated by Monte-Carlo (M-C) simulations.

  • A Novel Dictionary-Based Method for Test Data Compression Using Heuristic Algorithm

    Diancheng WU  Jiarui LI  Leiou WANG  Donghui WANG  Chengpeng HAO  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E99-C No:6
      Page(s):
    730-733

    This paper presents a novel data compression method for testing integrated circuits within the selective dictionary coding framework. Due to the inverse value of dictionary indices made use of for the compatibility analysis with the heuristic algorithm utilized to solve the maximum clique problem, the method can obtain a higher compression ratio than existing ones.

  • Lower Trunk Acceleration Signals Reflect Fall Risk During Walking

    Yoshitaka OTANI  Osamu AOKI  Tomohiro HIROTA  Hiroshi ANDO  

     
    LETTER

      Pubricized:
    2016/04/01
      Vol:
    E99-D No:6
      Page(s):
    1482-1484

    The purpose of this study is to make available a fall risk assessment for stroke patients during walking using an accelerometer. We assessed gait parameters, normalized root mean squared acceleration (NRMSA) and berg balance scale (BBS) values. Walking dynamics were better reflected in terms of the risk of falls during walking by NRMSA compared to the BBS.

  • A Robust Algorithm for Extracting Signals with Temporal Structure

    Yibing LI  Wei NIE  Fang YE  

     
    PAPER-Biological Engineering

      Pubricized:
    2016/03/15
      Vol:
    E99-D No:6
      Page(s):
    1671-1677

    The separation of signals with temporal structure from mixed sources is a challenging problem in signal processing. For this problem, blind source extraction (BSE) is more suitable than blind source separation (BSS) because it has lower computation cost. Nowadays many BSE algorithms can be used to extract signals with temporal structure. However, some of them are not robust because they are too dependent on the estimation precision of time delay; some others need to choose parameters before extracting, which means that arbitrariness can't be avoided. In order to solve the above problems, we propose a robust source extraction algorithm whose performance doesn't rely on the choice of parameters. The algorithm is realized by maximizing the objective function that we develop based on the non-Gaussianity and the temporal structure of source signals. Furthermore, we analyze the stability of the algorithm. Simulation results show that the algorithm can extract the desired signal from large numbers of observed sensor signals and is very robust to error in the estimation of time delay.

  • Inductance and Current Distribution Extraction in Nb Multilayer Circuits with Superconductive and Resistive Components Open Access

    Coenrad FOURIE  Naoki TAKEUCHI  Nobuyuki YOSHIKAWA  

     
    INVITED PAPER

      Vol:
    E99-C No:6
      Page(s):
    683-691

    We describe a calculation tool and modeling methods to find self and mutual inductance and current distribution in superconductive multilayer circuit layouts. Accuracy of the numerical solver is discussed and compared with experimental measurements. Effects of modeling parameter selection on calculation results are shown, and we make conclusions on the selection of modeling parameters for fast but sufficiently accurate calculations when calibration methods are used. Circuit theory for the calculation of branch impedances from the output of the numerical solver is discussed, and compensation for solution difficulties is shown through example. We elaborate on the construction of extraction models for superconductive integrated circuits, with and without resistive branches. We also propose a method to calculate current distribution in a multilayer circuit with multiple bias current feed points. Finally, detailed examples are shown where the effects of stacked vias, bias pillars, coupling, ground connection stacks and ground return currents in circuit layouts for the AIST advanced process (ADP2) and standard process (STP2) are analyzed. We show that multilayer inductance and current distribution extraction in such circuits provides much more information than merely branch inductance, and can be used to improve layouts; for example through reduced coupling between conductors.

  • Choreography Realization by Re-Constructible Decomposition of Acyclic Relations

    Toshiyuki MIYAMOTO  

     
    PAPER-Formal Methods

      Pubricized:
    2016/05/02
      Vol:
    E99-D No:6
      Page(s):
    1420-1427

    For a service-oriented architecture-based system, the problem of synthesizing a concrete model (i.e., a behavioral model) for each peer configuring the system from an abstract specification — which is referred to as choreography — is known as the choreography realization problem. In this paper, we consider the condition for the behavioral model when choreography is given by an acyclic relation. A new notion called re-constructible decomposition of acyclic relations is introduced, and a necessary and sufficient condition for a decomposed relation to be re-constructible is shown. The condition provides lower and upper bounds of the acyclic relation for the behavioral model. Thus, the degree of freedom for behavioral models increases; developing algorithms for synthesizing an intelligible model for users becomes possible. It is also expected that the condition is applied to the case where choreography is given by a set of acyclic relations.

  • A Comprehensive Medicine Management System with Multiple Sources in a Nursing Home in Taiwan

    Liang-Bi CHEN  Wan-Jung CHANG  Kuen-Min LEE  Chi-Wei HUANG  Katherine Shu-Min LI  

     
    PAPER

      Pubricized:
    2016/04/01
      Vol:
    E99-D No:6
      Page(s):
    1447-1454

    Residents living in a nursing home usually have established medical histories in multiple sources, and most previous medicine management systems have only focused on the integration of prescriptions and the identification of repeated drug uses. Therefore, a comprehensive medicine management system is proposed to integrate medical information from different sources. The proposed system not only detects inappropriate drugs automatically but also allows users to input such information for any non-prescription medicines that the residents take. Every participant can fully track the residents' latest medicine use online and in real time. Pharmacists are able to issue requests for suggestions on medicine use, and residents can also have a comprehensive understanding of their medicine use. The proposed scheme has been practically implemented in a nursing home in Taiwan. The evaluation results show that the average time to detect an inappropriate drug use and complete a medicine record is reduced. With automatic and precise comparisons, the repeated drugs and drug side effects are identified effectively such that the amount of medicine cost spent on the residents is also reduced. Consequently, the proactive feedback, real-time tracking, and interactive consulting mechanisms bind all parties together to realize a comprehensive medicine management system.

  • Application Performance Profiling in Android Dalvik Virtual Machines

    Hung-Cheng CHANG  Kuei-Chung CHANG  Ying-Dar LIN  Yuan-Cheng LAI  

     
    PAPER-Software System

      Pubricized:
    2016/01/25
      Vol:
    E99-D No:5
      Page(s):
    1296-1303

    Most Android applications are written in JAVA and run on a Dalvik virtual machine. For smartphone vendors and users who wish to know the performance of an application on a particular smartphone but cannot obtain the source code, we propose a new technique, Dalvik Profiler for Applications (DPA), to profile an Android application on a Dalvik virtual machine without the support of source code. Within a Dalvik virtual machine, we determine the entry and exit locations of a method, log its execution time, and analyze the log to determine the performance of the application. Our experimental results show an error ratio of less than 5% from the baseline tool Traceview which instruments source code. The results also show some interesting behaviors of applications and smartphones: the performance of some smartphones with higher hardware specifications is 1.5 times less than the phones with lower specifications. DPA is now publicly available as an open source tool.

  • Effects of Numerical Errors on Sample Mahalanobis Distances

    Yasuyuki KOBAYASHI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2016/02/12
      Vol:
    E99-D No:5
      Page(s):
    1337-1344

    The numerical error of a sample Mahalanobis distance (T2=y'S-1y) with sample covariance matrix S is investigated. It is found that in order to suppress the numerical error of T2, the following conditions need to be satisfied. First, the reciprocal square root of the condition number of S should be larger than the relative error of calculating floating-point real-number variables. The second proposed condition is based on the relative error of the observed sample vector y in T2. If the relative error of y is larger than the relative error of the real-number variables, the former governs the numerical error of T2. Numerical experiments are conducted to show that the numerical error of T2 can be suppressed if the two above-mentioned conditions are satisfied.

  • Reflection and Rotation Invariant Uniform Patterns for Texture Classification

    Chao LIANG  Wenming YANG  Fei ZHOU  Qingmin LIAO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/02/05
      Vol:
    E99-D No:5
      Page(s):
    1400-1403

    In this letter, we propose a novel texture descriptor that takes advantage of an anisotropic neighborhood. A brand new encoding scheme called Reflection and Rotation Invariant Uniform Patterns (rriu2) is proposed to explore local structures of textures. The proposed descriptor is called Oriented Local Binary Patterns (OLBP). OLBP may be incorporated into other varieties of Local Binary Patterns (LBP) to obtain more powerful texture descriptors. Experimental results on CUReT and Outex databases show that OLBP not only significantly outperforms LBP, but also demonstrates great robustness to rotation and illuminant changes.

  • Efficient Evaluation of Maximizing Range Sum Queries in a Road Network

    Tien-Khoi PHAN  HaRim JUNG  Hee Yong YOUN  Ung-Mo KIM  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2016/02/16
      Vol:
    E99-D No:5
      Page(s):
    1326-1336

    Given a set of positive-weighted points and a query rectangle r (specified by a client) of given extents, the goal of a maximizing range sum (MaxRS) query is to find the optimal location of r such that the total weights of all points covered by r is maximized. In this paper, we address the problem of processing MaxRS queries over road network databases and propose two new external memory methods. Through a set of simulations, we evaluate the performance of the proposed methods.

  • Frequency-Domain Equalization for Single-Carrier Space-Time Block Coded Transmit Diversity in a High Mobility Environment

    Hiroyuki MIYAZAKI  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:5
      Page(s):
    1180-1188

    Single-carrier (SC) transmission with space-time block coded (STBC) transmit diversity can achieve good bit error rate (BER) performance. However, in a high mobility environment, the STBC codeword orthogonality is distorted and as consequence, the BER performance is degraded by the interference caused by the orthogonality distortion of STBC codeword. In this paper, we proposed a novel frequency-domain equalization (FDE) for SC-STBC transmit diversity in doubly selective fading channel. Multiple FDE weight matrices, each associated with a different code block, are jointly optimized based on the minimum mean square error (MMSE) criterion taking into account not only channel frequency variation but also channel time variation over the STBC codeword. Computer simulations confirm that the proposed robust FDE achieves BER performance superior to conventional FDE, which was designed based on the assumption of a quasi-static fading.

  • The Multi-Level SICC Algorithm Based Virtual Machine Dynamic Consolidation and FFD Algorithm

    Changming ZHAO  Jian LIU  Jian LIU  Sani UMAR ABDULLAHI  

     
    PAPER-Network

      Vol:
    E99-B No:5
      Page(s):
    1110-1120

    The Virtual Machine Consolidation (VMC) algorithm is the core strategy of virtualization resource management software. In general, VMC efficiency dictates cloud datacenter efficiency to a great extent. However, all the current Virtual Machine (VM) consolidation strategies, including the Iterative Correlation Match Algorithm (ICMA), are not suitable for the dynamic VM consolidation of the level of physical servers in actual datacenter environments. In this paper, we propose two VM consolidation and placement strategies which are called standard Segmentation Iteration Correlation Combination (standard SICC) and Multi-level Segmentation Iteration Correlation Combination (multi-level SICC). The standard SICC is suitable for the single-size VM consolidation environment and is the cornerstone of multi-level SICC which is suitable for the multi-size VM consolidation environment. Numerical simulation results indicate that the numbers of remaining Consolidated VM (CVM), which are generated by standard SICC, are 20% less than the corresponding parameters of ICMA in the single-level VM environment with the given initial condition. The numbers of remaining CVMs of multi-level SICC are 14% less than the corresponding parameters of ICMA in the multi-level VM environment. Furthermore, the used physical servers of multi-level SICC are also 5% less than the used servers of ICMA under the given initial condition.

  • Fast Handover Mechanism for High Data Rate Ground-to-Train Free-Space Optical Communication Transceiver for Internet Streaming Applications

    Kosuke MORI  Masanori TERADA  Daisuke YAMAGUCHI  Kazuki NAKAMURA  Kunitake KANEKO  Fumio TERAOKA  Shinichiro HARUYAMA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E99-B No:5
      Page(s):
    1206-1215

    There is a strong demand to enjoy broadband and stable Internet connectivity not only in office and the home but also in high-speed train. Several systems are providing high-speed train with Internet connectivity using various technologies such as leaky coaxial cable (LCX), Wi-Fi, and WiMAX. However, their actual throughputs are less than 2Mbps. We developed a free-space optical (FSO) communication transceiver called LaserTrainComm2014 that achieves the throughput of 1 Gbps between the ground and a train. LaserTrainComm2014 employs a high-speed image sensor for coarse tracking and a quadrant photo-diode (QPD) for accurate tracking. Since the image captured by the high-speed image sensor has several types of noise, image processing is necessary to detect the beacon light of the other LaserTrainComm2014. As a result of field experiments in a vehicle test course, LaserTrainComm2014 achieves handover time of 21 milliseconds (ms) in the link layer at the speed of 60km/h. Even if the network layer signaling takes time of 10 milliseconds, the total communication disruption time due to handover is short enough to provide passengers with Internet connectivity for live streaming Internet applications such as YouTube, Internet Radio, and Skype.

  • Real-Time Streaming Data Delivery over Named Data Networking Open Access

    Peter GUSEV  Zhehao WANG  Jeff BURKE  Lixia ZHANG  Takahiro YONEDA  Ryota OHNISHI  Eiichi MURAMOTO  

     
    INVITED PAPER

      Vol:
    E99-B No:5
      Page(s):
    974-991

    Named Data Networking (NDN) is a proposed future Internet architecture that shifts the fundamental abstraction of the network from host-to-host communication to request-response for named, signed data-an information dissemination focused approach. This paper describes a general design for receiver-driven, real-time streaming data (RTSD) applications over the current NDN implementation that aims to take advantage of the architecture's unique affordances. It is based on experimental development and testing of running code for real-time video conferencing, a positional tracking system for interactive multimedia, and a distributed control system for live performance. The design includes initial approaches to minimizing latency, managing buffer size and Interest retransmission, and adapting retrieval to maximize bandwidth and control congestion. Initial implementations of these approaches are evaluated for functionality and performance results, and the potential for future research in this area, and improved performance as new features of the architecture become available, is discussed.

  • Low PAPR Signal Design for CIOD Using Selected and Clipped QAM Signal

    Ho Kyoung LEE  Changjoong KIM  Seo Weon HEO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:5
      Page(s):
    1143-1150

    Coordinate interleaved orthogonal design (CIOD) using four transmit antennas provides full diversity, full rate (FDFR) properties with low decoding complexity. However, the constellation expansion due to the coordinate interleaving of the rotated constellation results in peak to average power ratio (PAPR) increase. In this paper, we propose two signal constellation design methods which have low PAPR. In the first method we propose a signal constellation by properly selecting the signal points among the expanded square QAM constellation points, based on the co-prime interleaving of the first coordinate signal. We design a regular interleaving pattern so that the coordinate distance product (CPD) after the interleaving becomes large to get the additional coding gain. In the other method we propose a novel constellation with low PAPR based on the clipping of the rotated square QAM constellation. Our proposed signal constellations show much lower PAPR than the ordinary rotated QAM constellations for CIOD.

4021-4040hit(20498hit)