The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

6661-6680hit(20498hit)

  • Digital Compensation of IQ Imbalance for Dual-Carrier Double Conversion Receivers

    Chester Sungchung PARK  Fitzgerald Sungkyung PARK  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E95-B No:5
      Page(s):
    1612-1619

    A receiver architecture and a digital IQ imbalance compensation method for dual-carrier reception are newly proposed. The impact of IQ imbalance on the baseband signal is mathematically analyzed. Based on the analysis, IQ imbalance parameters are estimated and the coupling effect of IQ imbalance is compensated using digital baseband processing alone. Simulation results show that the proposed IQ imbalance compensation successfully removes IQ imbalance. The deviation from the ideal performance is less than 1 dB when it is applied to the 3GPP-LTE carrier aggregation.

  • Novel Algorithm for Polar and Spherical Fourier Analysis on Two and Three Dimensional Images

    Zhuo YANG  Sei-ichiro KAMATA  

     
    PAPER-Image Processing

      Vol:
    E95-D No:5
      Page(s):
    1248-1255

    Polar and Spherical Fourier analysis can be used to extract rotation invariant features for image retrieval and pattern recognition tasks. They are demonstrated to show superiorities comparing with other methods on describing rotation invariant features of two and three dimensional images. Based on mathematical properties of trigonometric functions and associated Legendre polynomials, fast algorithms are proposed for multimedia applications like real time systems and large multimedia databases in order to increase the computation speed. The symmetric points are computed simultaneously. Inspired by relative prime number theory, systematic analysis are given in this paper. Novel algorithm is deduced that provide even faster speed. Proposed method are 9–15% faster than previous work. The experimental results on two and three dimensional images are given to illustrate the effectiveness of the proposed method. Multimedia signal processing applications that need real time polar and spherical Fourier analysis can be benefit from this work.

  • ELBA: A New Efficient Load-Balancing Association in IEEE 802.15.4-Based Wireless Sensor Networks

    Jae-Hyung LEE  Dong-Sung KIM  Soo-Young SHIN  

     
    LETTER-Network

      Vol:
    E95-B No:5
      Page(s):
    1830-1833

    In this letter, a novel association method called ELBA (efficient load balancing association) is proposed for improved load balancing in IEEE 802.15.4-based WSNs (wireless sensor networks). ELBA adds new nodes to the network in an efficient load-balancing manner by exploiting not only RSSI (received signal strength indicator), which is used in the standard, but also traffic-load, the number of allocated GTSs (guaranteed time slots), and the number of parent nodes and child nodes. Simulation results show that ELBA offers better performance in load balancing and preventing congestion.

  • Analytical Model of Nano-Electromechanical (NEM) Nonvolatile Memory Cells

    Boram HAN  Woo Young CHOI  

     
    BRIEF PAPER

      Vol:
    E95-C No:5
      Page(s):
    914-916

    The fringe field effects of nano-electromechanical (NEM) nonvolatile memory cells have been investigated analytically for the accurate evaluation of NEM memory cells. As the beam width is scaled down, fringe field effect becomes more severe. It has been observed that pull-in, release and hysteresis voltage decrease more than our prediction. Also, the fringe field on cell characteristics has been discussed.

  • A Novel Framework for Extracting Visual Feature-Based Keyword Relationships from an Image Database

    Marie KATSURAI  Takahiro OGAWA  Miki HASEYAMA  

     
    PAPER-Image

      Vol:
    E95-A No:5
      Page(s):
    927-937

    In this paper, a novel framework for extracting visual feature-based keyword relationships from an image database is proposed. From the characteristic that a set of relevant keywords tends to have common visual features, the keyword relationships in a target image database are extracted by using the following two steps. First, the relationship between each keyword and its corresponding visual features is modeled by using a classifier. This step enables detection of visual features related to each keyword. In the second step, the keyword relationships are extracted from the obtained results. Specifically, in order to measure the relevance between two keywords, the proposed method removes visual features related to one keyword from training images and monitors the performance of the classifier obtained for the other keyword. This measurement is the biggest difference from other conventional methods that focus on only keyword co-occurrences or visual similarities. Results of experiments conducted using an image database showed the effectiveness of the proposed method.

  • Adaptive Directional Multicast Scheme in mmWave WPANs with Directional Antennas

    Kyungchul SHIN  Youngsun KIM  Chul-Hee KANG  

     
    LETTER-Network

      Vol:
    E95-B No:5
      Page(s):
    1834-1838

    This letter considers problems with an efficient link layer multicasting technique in a wireless personal area network environment using a directional antenna. First, we propose an adaptive directional multicast scheme (ADMS) for delay-sensitive applications in mmWave WPAN with directional antenna. Second, the proposed ADMS aims to improve throughput as well as satisfy the application-specific delay requirements. We evaluate the performances of legacy Medium Access Control, Life Centric Approach, and adaptive directional multicast schemes via QualNet 5.0. Our results show that the proposed scheme provides better performance in terms of total network throughput, average transmission time, packet delivery ratio and decodable frame ratio.

  • Channel Aggregation Schemes for Cognitive Radio Networks

    Jongheon LEE  Jaewoo SO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:5
      Page(s):
    1802-1809

    This paper proposed three channel aggregation schemes for cognitive radio networks, a constant channel aggregation scheme, a probability distribution-based variable channel aggregation scheme, and a residual channel-based variable channel aggregation scheme. A cognitive radio network can have a wide bandwidth if unused channels in the primary networks are aggregated. Channel aggregation schemes involve either constant channel aggregation or variable channel aggregation. In this paper, a Markov chain is used to develop an analytical model of channel aggregation schemes; and the performance of the model is evaluated in terms of the average sojourn time, the average throughput, the forced termination probability, and the blocking probability. Simulation results show that channel aggregation schemes can reduce the average sojourn time of cognitive users by increasing the channel occupation rate of unused channels in a primary network.

  • Miniaturized Broadband Antenna Combining Fractal Patterns and Self-Complementary Structures for UWB Applications

    Vasil DIMITROV  Akira SAITOU  Kazuhiko HONJO  

     
    LETTER-Antennas and Propagation

      Vol:
    E95-B No:5
      Page(s):
    1844-1847

    Miniaturized broadband antennas combining a fractal pattern and a self-complementary structure are demonstrated for UWB applications. Using four kinds of fractal patterns generated with an octagon initiator, similar to a self-complementary structure, we investigate the effect of the fractal pattern on broadband performance. The lower band-edge frequency of the broad bandwidth is decreased by the reduced constant input impedance, which is controlled by the vacant area size inside the fractal pattern. The reduced constant input impedance is shown to be produced by the extended current distribution flowing along the vacant areas. Given the results, miniaturized broadband antennas, impedance-matched to 50 Ω, are designed and fabricated. The measured return loss was better than 10 dB between 2.95 and 10.7 GHz with a size of 2712.5 mm. The lower band-edge frequency was reduced by 28% compared with the initiator.

  • Automatic IQ Imbalance Compensation Technique for Quadrature Modulator by Single-Tone Testing

    Minseok KIM  Yohei KONISHI  Jun-ichi TAKADA  Boxin GAO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:5
      Page(s):
    1864-1868

    This letter proposes an automatic IQ imbalance compensation technique for quadrature modulators by means of spectrum measurement of RF signal using a spectrum analyzer. The analyzer feeds back only magnitude information of the frequency spectrum of the signal. To realize IQ imbalance compensation, the conventional method of steepest descent is modified; the descent direction is empirically determined and a variable step-size is introduced for accelerating convergence. The experimental results for a four-channel transmitter operating at 11 GHz are presented for verification.

  • Identification of Quasi-ARX Neurofuzzy Model with an SVR and GA Approach

    Yu CHENG  Lan WANG  Jinglu HU  

     
    PAPER-Systems and Control

      Vol:
    E95-A No:5
      Page(s):
    876-883

    The quasi-ARX neurofuzzy (Q-ARX-NF) model has shown great approximation ability and usefulness in nonlinear system identification and control. It owns an ARX-like linear structure, and the coefficients are expressed by an incorporated neurofuzzy (InNF) network. However, the Q-ARX-NF model suffers from curse-of-dimensionality problem, because the number of fuzzy rules in the InNF network increases exponentially with input space dimension. It may result in high computational complexity and over-fitting. In this paper, the curse-of-dimensionality is solved in two ways. Firstly, a support vector regression (SVR) based approach is used to reduce computational complexity by a dual form of quadratic programming (QP) optimization, where the solution is independent of input dimensions. Secondly, genetic algorithm (GA) based input selection is applied with a novel fitness evaluation function, and a parsimonious model structure is generated with only important inputs for the InNF network. Mathematical and real system simulations are carried out to demonstrate the effectiveness of the proposed method.

  • Static Enforcement of Static Separation-of-Duty Policies in Usage Control Authorization Models

    Jianfeng LU  Ruixuan LI  Jinwei HU  Dewu XU  

     
    PAPER

      Vol:
    E95-B No:5
      Page(s):
    1508-1518

    Separation-of-Duty (SoD) is a fundamental security principle for prevention of fraud and errors in computer security. It has been studied extensively in traditional access control models. However, the research of SoD policy in the recently proposed usage control (UCON) model has not been well studied. This paper formulates and studies the fundamental problem of static enforcement of static SoD (SSoD) policies in the context of UCONA, a sub-model of UCON only considering authorizations. Firstly, we define a set-based specification of SSoD policies, and the safety checking problem for SSoD in UCONA. Secondly, we study the problem of determining whether an SSoD policy is enforceable. Thirdly, we show that it is intractable (coNP-complete) to direct statically enforce SSoD policies in UCONA, while checking whether a UCONA state satisfies a set of static mutually exclusive attribute (SMEA) constraints is efficient, which provides a justification for using SMEA constraints to enforce SSoD policies. Finally, we introduce a indirect static enforcement for SSoD policies in UCONA. We show how to generate the least restrictive SMEA constraints for enforcing SSoD policies in UCONA, by using the attribute-level SSoD requirement as an intermediate step. The results are fundamental to understanding SSoD policies in UCON.

  • Topological Comparison of Brain Functional Networks and Internet Service Providers

    Kenji LEIBNITZ  Tetsuya SHIMOKAWA  Hiroaki UMEHARA  Tsutomu MURATA  

     
    PAPER

      Vol:
    E95-B No:5
      Page(s):
    1539-1546

    Network structures can be found in almost any kind of natural or artificial systems as transport medium for communication between the respective nodes. In this paper we study certain key topological features of brain functional networks obtained from functional magnetic resonance imaging (fMRI) measurements. We compare complex network measures of the extracted topologies with those from Internet service providers (ISPs). Our goal is to identify important features which will be helpful in designing more robust and adaptive future information network architectures.

  • Performance of Thorup's Shortest Path Algorithm for Large-Scale Network Simulation

    Yusuke SAKUMOTO  Hiroyuki OHSAKI  Makoto IMASE  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E95-B No:5
      Page(s):
    1592-1601

    In this paper, we investigate the performance of Thorup's algorithm by comparing it to Dijkstra's algorithm for large-scale network simulations. One of the challenges toward the realization of large-scale network simulations is the efficient execution to find shortest paths in a graph with N vertices and M edges. The time complexity for solving a single-source shortest path (SSSP) problem with Dijkstra's algorithm with a binary heap (DIJKSTRA-BH) is O((M + N) log N). An sophisticated algorithm called Thorup's algorithm has been proposed. The original version of Thorup's algorithm (THORUP-FR) has the time complexity of O(M + N). A simplified version of Thorup's algorithm (THORUP-KL) has the time complexity of O(M α(N) + N) where α(N) is the functional inverse of the Ackerman function. In this paper, we compare the performances (i.e., execution time and memory consumption) of THORUP-KL and DIJKSTRA-BH since it is known that THORUP-FR is at least ten times slower than Dijkstra's algorithm with a Fibonaccii heap. We find that (1) THORUP-KL is almost always faster than DIJKSTRA-BH for large-scale network simulations, and (2) the performances of THORUP-KL and DIJKSTRA-BH deviate from their time complexities due to the presence of the memory cache in the microprocessor.

  • ER-TCP (Exponential Recovery-TCP): High-Performance TCP for Satellite Networks

    Mankyu PARK  Minsu SHIN  Deockgil OH  Doseob AHN  Byungchul KIM  Jaeyong LEE  

     
    PAPER-Network

      Vol:
    E95-B No:5
      Page(s):
    1679-1688

    A transmission control protocol (TCP) using an additive increase multiplicative decrease (AIMD) algorithm for congestion control plays a leading role in advanced Internet services. However, the AIMD method shows only low link utilization in lossy networks with long delay such as satellite networks. This is because the cwnd dynamics of TCP are reduced by long propagation delay, and TCP uses an inadequate congestion control algorithm, which does not distinguish packet loss from wireless errors from that due to congestion of the wireless networks. To overcome these problems, we propose an exponential recovery (ER) TCP that uses the exponential recovery function for rapidly occupying available bandwidth during a congestion avoidance period, and an adaptive congestion window decrease scheme using timestamp base available bandwidth estimation (TABE) to cope with wireless channel errors. We simulate the proposed ER-TCP under various test scenarios using the ns-2 network simulator to verify its performance enhancement. Simulation results show that the proposal is a more suitable TCP than the several TCP variants under long delay and heavy loss probability environments of satellite networks.

  • Decidability of the Security against Inference Attacks Using a Functional Dependency on XML Databases

    Kenji HASHIMOTO  Hiroto KAWAI  Yasunori ISHIHARA  Toru FUJIWARA  

     
    PAPER-Database Security

      Vol:
    E95-D No:5
      Page(s):
    1365-1374

    This paper discusses verification of the security against inference attacks on XML databases in the presence of a functional dependency. So far, we have provided the verification method for k-secrecy, which is a metric for the security against inference attacks on databases. Intuitively, k-secrecy means that the number of candidates of sensitive data (i.e., the result of unauthorized query) of a given database instance cannot be narrowed down to k-1 by using available information such as authorized queries and their results. In this paper, we consider a functional dependency on database instances as one of the available information. Functional dependencies help attackers to reduce the number of the candidates for the sensitive information. The verification method we have provided cannot be naively extended to the k-secrecy problem with a functional dependency. The method requires that the candidate set can be captured by a tree automaton, but the candidate set when a functional dependency is considered cannot be always captured by any tree automaton. We show that the ∞-secrecy problem in the presence of a functional dependency is decidable when a given unauthorized query is represented by a deterministic topdown tree transducer, without explicitly computing the candidate set.

  • Evaluation of Performance in Vertical 1T-DRAM and Planar 1T-DRAM

    Yuto NORIFUSA  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E95-C No:5
      Page(s):
    847-853

    The performances of the conventional planar type 1T DRAM and the Vertical type 1T DRAM are compared based on structure difference using a fully-consistent device simulator. We discuss the structural advantage of the Vertical type 1T-DRAM in comparison with the conventional planar type 1T-DRAM, and evaluate their performance in each operating mode such as write, erase, read, and hold; and discuss its cell performances such as Cell Current Margin and data retention. These results provide a useful guideline designing the high performance Vertical type 1T-DRAM cell.

  • FG Width Scalability of the 3-D Vertical FG NAND Using the Sidewall Control Gate (SCG)

    Moon-Sik SEO  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E95-C No:5
      Page(s):
    891-897

    Recently, the 3-D vertical Floating Gate (FG) type NAND cell arrays with the Sidewall Control Gate (SCG), such as ESCG, DC-SF and S-SCG, are receiving attention to overcome the reliability issues of Charge Trap (CT) type device. Using this novel cell structure, highly reliable flash cell operations were successfully implemented without interference effect on the FG type cell. However, the 3-D vertical FG type cell has large cell size by about 60% for the cylindrical FG structure. In this point of view, we intensively investigate the scalability of the FG width of the 3-D vertical FG NAND cells. In case of the planar FG type NAND cell, the FG height cannot be scaled down due to the necessity of obtaining sufficient coupling ratio and high program speed. In contrast, for the 3-D vertical FG NAND with SCG, the FG is formed cylindrically, which is fully covered with surrounded CG, and very high CG coupling ratio can be achieved. As results, the scaling of FG width of the 3-D vertical FG NAND cell with S-SCG can be successfully demonstrated at 10 nm regime, which is almost the same as the CT layer of recent BE-SONOS NAND.

  • Localization of Radiation Integrals Using the Fresnel Zone Numbers

    Takayuki KOHAMA  Makoto ANDO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E95-C No:5
      Page(s):
    928-935

    Radiation integral areas are localized and reduced based upon the locality of scattering phenomena. In the high frequency, the scattering field is given by the currents, not the entire region, but on the local areas near the scattering centers, such as the stationary phase points and edge diffraction points, due to the cancelling effect of integrand in the radiation integral. The numerical calculation which this locality is implemented into has been proposed for 2-dimensional problems. The scattering field can be approximated by integrating the currents weighted by the adequate function in the local areas whose size and position are determined appropriately. Fresnel zone was previously introduced as the good criterion to determine the local areas, but the determination method was slightly different, depending on the type of scattering centers. The objective of this paper is to advance the Fresnel zone criteria in a 2-dimensional case to the next stage with enhanced generality and applicability. The Fresnel zone number is applied not directly to the actual surface but to the virtual one associated with the modified surface-normal vector satisfying the reflection law. At the same time, the argument in the weighting function is newly defined by the Fresnel zone number instead of the actual distance from the scattering centers. These two revisions bring about the following three advantages; the uniform treatment of various types scattering centers, the smallest area in the localization and applicability to 3-dimensional problems.

  • Low-Complexity Coarse-Level Mode-Mapping Based H.264/AVC to H.264/SVC Spatial Transcoding for Video Conferencing

    Lei SUN  Jie LENG  Jia SU  Yiqing HUANG  Hiroomi MOTOHASHI  Takeshi IKENAGA  

     
    PAPER-Video Processing

      Vol:
    E95-D No:5
      Page(s):
    1313-1323

    Scalable Video Coding (SVC) was standardized as an extension of H.264/AVC with the intention to provide flexible adaptation to heterogeneous networks and different end-user requirements, which provides great scalability in multi-point applications such as video conferencing. However, due to the existence of H.264/AVC-based systems, transcoding between AVC and SVC becomes necessary. Most existing works focus on temporal transcoding, quality transcoding or SVC-to-AVC spatial transcoding while the straightforward re-encoding method requires high computational cost. This paper proposes a low-complexity AVC-to-SVC spatial transcoder based on coarse-level mode mapping for video conferencing scenes. First, to omit unnecessary motion estimations (ME) for layers with reduced resolution, an ME skipping scheme based on AVC mode distribution is proposed with an adaptive search range. Then a probability-profile based scheme is proposed for further mode skipping. After that 3 coarse-level mode-mapping methods are presented for fast mode decision and the adaptive usage of the 3 methods is discussed. Finally, motion vector (MV) refinement is introduced for further lower-layer time reduction. As for the top layer, direct encapsulation is proposed to preserve better quality and another scheme involving inter-layer predictions is also provided for bandwidth-crucial applications. Simulation results show that proposed transcoder achieves up to 92.6% time reduction without significant coding efficiency loss compared to re-encoding method.

  • Using a Renormalization Group to Create Ideal Hierarchical Network Architecture with Time Scale Dependency Open Access

    Masaki AIDA  

     
    INVITED PAPER

      Vol:
    E95-B No:5
      Page(s):
    1488-1500

    This paper employs the nature-inspired approach to investigate the ideal architecture of communication networks as large-scale and complex systems. Conventional architectures are hierarchical with respect to the functions of network operations due entirely to implementation concerns and not to any fundamental conceptual benefit. In contrast, the large-scale systems found in nature are hierarchical and demonstrate orderly behavior due to their space/time scale dependencies. In this paper, by examining the fundamental requirements inherent in controlling network operations, we clarify the hierarchical structure of network operations with respect to time scale. We also describe an attempt to build a new network architecture based on the structure. In addition, as an example of the hierarchical structure, we apply the quasi-static approach to describe user-system interaction, and we describe a hierarchy model developed on the renormalization group approach.

6661-6680hit(20498hit)