The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

7861-7880hit(20498hit)

  • NP-Hard and k-EXPSPACE-Hard Cast Puzzles

    Chuzo IWAMOTO  Kento SASAKI  Kenji NISHIO  Kenichi MORITA  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E93-D No:11
      Page(s):
    2995-3004

    A disentanglement puzzle consists of mechanically interlinked pieces, and the puzzle is solved by disentangling one piece from another set of pieces. A cast puzzle is a type of disentanglement puzzle, where each piece is a zinc die-casting alloy. In this paper, we consider the generalized cast puzzle problem whose input is the layout of a finite number of pieces (polyhedrons) in the 3-dimensional Euclidean space. For every integer k ≥ 0, we present a polynomial-time transformation from an arbitrary k-exponential-space Turing machine M and its input x to a cast puzzle c1 of size k-exponential in |x| such that M accepts x if and only if c1 is solvable. Here, the layout of c1 is encoded as a string of length polynomial (even if c1 has size k-exponential). Therefore, the cast puzzle problem of size k-exponential is k-EXPSPACE-hard for every integer k ≥ 0. We also present a polynomial-time transformation from an arbitrary instance f of the SAT problem to a cast puzzle c2 such that f is satisfiable if and only if c2 is solvable.

  • Interference Coordination in Compact Frequency Reuse for Multihop Cellular Networks

    Yue ZHAO  Xuming FANG  Zhengguang ZHAO  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E93-A No:11
      Page(s):
    2312-2319

    Continuously increasing the bandwidth to enhance the capacity is impractical because of the scarcity of spectrum availability. Fortunately, on the basis of the characteristics of the multihop cellular networks (MCNs), a new compact frequency reuse scheme has been proposed to provide higher spectrum utilization efficiency and larger capacity without increasing the cost on network. Base stations (BSs) and relay stations (RSs) could transmit simultaneously on the same frequency according to the compact frequency reuse scheme. In this situation, however, mobile stations (MSs) near the coverage boundary will suffer serious interference and their traffic quality can hardly be guaranteed. In order to mitigate the interference while maintaining high spectrum utilization efficiency, this paper introduces a fractional frequency reuse (FFR) scheme into multihop cellular networks, in which the principle of FFR scheme and characteristics of frequency resources configurations are described, then the transmission (Tx) power consumption of BS and RSs is analyzed. The proposed scheme can both meet the requirement of high traffic load in future cellular system and maximize the benefit by reducing the Tx power consumption. Numerical results demonstrate that the proposed FFR in compact frequency reuse achieves higher cell coverage probability and larger capacity with respect to the conventional schemes.

  • Reduction of Image Degradation due to Viewing Angle in Adaptive Dimming Technique Open Access

    Seiji OGAKI  Kazuma SAKAKIBARA  Tomokazu SHIGA  

     
    INVITED PAPER

      Vol:
    E93-C No:11
      Page(s):
    1572-1576

    An adaptive dimming technique controls both LCD panel transmittance and its backlight luminance adequately and locally according to the input TV signal. The technique reduces the power consumption and also improves the picture quality. However, a steep change in backlight luminance distribution due to the application of the technique causes image degradation around the boundary of the segments when the LCD is viewed from an angle. The main factor of image degradation is the illumination of a pixel by neighboring pixel's corresponding backlight when the LCD is viewed from an angle rather than normal direction. From the subjective evaluation of image quality and computer simulation, it is found that the gradient of the backlight luminance variation to luminance at the border of the segment should be less than 0.022 per pixel in order to suppress the image degradation.

  • Is There Real Fusion between Sensing and Network Technology? -- What are the Problems? Open Access

    Masatoshi ISHIKAWA  

     
    INVITED PAPER

      Vol:
    E93-B No:11
      Page(s):
    2855-2858

    Processing structures required in sensing are designed to convert real-world information into useful information, and there are various restrictions and performance goals depending on physical restrictions and the target applications. On the other hand, network technologies are mainly designed for data exchange in the information world, as is seen in packet communications, and do not go well with sensing structures from the viewpoints of real-time properties, spatial continuity, etc. This indicates the need for understanding the architectures and restrictions of sensor technologies and network technologies when aiming to fuse these technologies. This paper clarifies the differences between these processing structures, proposes some issues to be addressed in order to achieve real fusion of them, and presents future directions toward real fusion of sensor technologies and network technologies.

  • Two-Dimensional Signal Localization Algorithm for Spectrum Sensing

    Johanna VARTIAINEN  Janne LEHTOMAKI  Harri SAARNISAARI  Markku Juntti   Kenta UMEBAYASHI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E93-B No:11
      Page(s):
    3129-3136

    The localization algorithm based on the double-thresholding (LAD) method was originally proposed for detecting and localizing narrowband (NB) signals with respect to the search bandwidth. Its weakness is that the localized signal is often split into several parts, especially when the signal-to-noise ratio (SNR) is low. This may lead to the illusion of unoccupied frequencies in the middle of the signals. In this paper, an extension of the LAD method, namely the two-dimensional LAD (2-D LAD), is proposed to solve that problem. In addition to offering low computational complexity, the proposed method is able to operate at lower SNR values than the original 1-D LAD method.

  • Path Diversity with Fractional Delay Transmission for Fractional Sampling-MIMO-OFDM System

    Haruki HIGUCHI  Yukitoshi SANADA  

     
    PAPER

      Vol:
    E93-A No:11
      Page(s):
    2115-2121

    Through fractional sampling (FS) it is possible to separate multipath components and achieve path diversity. However, if no path component whose delay corresponds to the sampling point, FS cannot obtain diversity gain. In this paper, a novel scheme to improve the performance with FS over a sparse multipath channel is proposed. The proposed scheme uses multiple transmit antennas and sends multiple signals with fractional delays. The performance improvement with the proposed scheme is confirmed through computer simulation. It is shown that the proposed scheme increases the capacity of a MIMO-OFDM system by a factor of 1.5 to 2 and improves the BER performance on the sparse multipath channels.

  • A Relay Selection Based on Eigenvalue Decomposition for Cooperative Communications in Indoor Ubiquitous Sensor Networks

    Sekchin CHANG  

     
    LETTER

      Vol:
    E93-B No:11
      Page(s):
    2967-2970

    A new best-relay selection scheme is proposed in this letter in order to maintain a reliable cooperative communications for ubiquitous sensor networks in indoor environments. The suggested technique relies on eigenvalue decomposition to select the best relay. The simulation results confirm that the performance of the proposed approach is better than that of the previous scheme in indoor environments.

  • A Game Theoretic Model for AS Topology Formation with the Scale-Free Property

    Tetsuo IMAI  Atsushi TANAKA  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E93-D No:11
      Page(s):
    3051-3058

    Recent studies investigating the Internet topology reported that inter Autonomous System (AS) topology exhibits a power-law degree distribution which is known as the scale-free property. Although there are many models to generate scale-free topologies, no game theoretic approaches have been proposed yet. In this paper, we propose the new dynamic game theoretic model for the AS level Internet topology formation. Through numerical simulations, we show our process tends to give emergence of the topologies which have the scale-free property especially in the case of large decay parameters and large random link costs. The significance of our study is summarized as following three topics. Firstly, we show that scale-free topologies can also emerge from the game theoretic model. Secondly, we propose the new dynamic process of the network formation game for modeling a process of AS topology formation, and show that our model is appropriate in the micro and macro senses. In the micro sense, our topology formation process is appropriate because this represents competitive and distributed situation observed in the real AS level Internet topology formation process. In the macro sense, some of statistical properties of emergent topologies from our process are similar to those of which also observed in the real AS level Internet topology. Finally, we demonstrate the numerical simulations of our process which is deterministic variation of dynamic process of network formation game with transfers. This is also the new result in the field of the game theory.

  • Exact Formulation for Stochastic ML Estimation of DOA

    Haihua CHEN  Masakiyo SUZUKI  

     
    PAPER

      Vol:
    E93-A No:11
      Page(s):
    2141-2152

    This paper addresses the issue of Unconditional or Stochastic Maximum likelihood (SML) estimation of directions-of-arrival (DOA) finding using sensors with arbitrary array configuration. The conventional SML estimation is formulated without an important condition that the covariance matrix of signal components must be non-negative definite. An likelihood function can not be evaluated exactly for all possible sets of directions. First, this paper reveals that the conventional SML has three problems due to the lack of the condition. 1) Solutions in the noise-free case are not unique. 2) Global solution in the noisy case becomes ambiguous occasionally. 3) There exist situations that any local solution does not satisfy the condition of the non-negative definiteness. We propose an exact formulation of the SML estimation of DOA to evaluate an likelihood function exactly for any possible set of directions. The proposed formulation can be utilized without any theoretical difficulty. The three problems of the conventional SML are solved by the proposed exact SML estimation. Furthermore we show a local search technique in the conventional SML has a good chance to find an optimal or suboptimal DOA although the suboptimal solutions violate the condition of the non-negative definiteness. Finally some simulation results are shown to demonstrate good estimation properties of the exact SML estimation.

  • A Data Cleansing Method for Clustering Large-Scale Transaction Databases

    Woong-Kee LOH  Yang-Sae MOON  Jun-Gyu KANG  

     
    LETTER-Data Engineering, Web Information Systems

      Vol:
    E93-D No:11
      Page(s):
    3120-3123

    In this paper, we emphasize the need for data cleansing when clustering large-scale transaction databases and propose a new data cleansing method that improves clustering quality and performance. We evaluate our data cleansing method through a series of experiments. As a result, the clustering quality and performance were significantly improved by up to 165% and 330%, respectively.

  • Spectrophotometer Calibration by a Double Integrating Sphere Reference Light Source and Display Panel Measurement Using Dark Sphere Open Access

    Tatsuhiko MATSUMOTO  Shigeo KUBOTA  Tsutomu SHIMURA  Shuichi HAGA  Takehiro NAKATSUE  Junichi OHSAKO  

     
    INVITED PAPER

      Vol:
    E93-C No:11
      Page(s):
    1590-1594

    We succeeded to develop a reference light source in the range of very low luminance using a double integrating sphere system, and calibrated a commercial spectrophotometer below 110-5 cd/m2 levels, which is 1/100 lower than the specified limit for measurement. And we improved measurements in the ultra low luminance range of displays using the calibrated commercial spectrophotometer and a dark sphere to suppress the influence of the surround.

  • Active Contour Model Based on Salient Boundary Point Image for Object Contour Detection in Natural Image

    Yan LI  Siwei LUO  Qi ZOU  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E93-D No:11
      Page(s):
    3136-3139

    This paper combines the LBP operator and the active contour model. It introduces a salient gradient vector flow snake (SGVF snake), based on a novel edge map generated from the salient boundary point image (SBP image). The MDGVM criterion process helps to reduce feature detail and background noise as well as retaining the salient boundary points. The resultant SBP image as an edge map gives powerful support to the SGVF snake because of the inherent combination of the intensity, gradient and texture cues. Experiments prove that the MDGVM process has high efficiency in reducing outliers and the SGVF snake is a large improvement over the GVF snake for contour detection, especially in natural images with low contrast and small texture background.

  • Dispersion of Nanoparticles in Liquid Crystals by Sputtering and Its Effect on the Electrooptic Properties Open Access

    Hiroyuki YOSHIDA  Kosuke KAWAMOTO  Yuma TANAKA  Hitoshi KUBO  Akihiko FUJII  Masanori OZAKI  

     
    INVITED PAPER

      Vol:
    E93-C No:11
      Page(s):
    1595-1601

    The authors describe a method to produce gold nanoparticle-dispersed liquid crystals by means of sputtering, and discuss how the presence of gold nanoparticles affect the electro-optic response of the host liquid crystal. The method exploits the fact that liquid crystals possess low vapor pressures which allow them to undergo the sputtering process, and the target material is sputtered directly on the liquid crystal in a reduced air pressure environment. The sample attained a red-brownish color after sputtering, but no aggregations were observed in the samples kept in the liquid crystal phase. Polarization optical microscopy of the sample placed in a conventional sandwich cell revealed that the phase transition behaviour is affected by the presence of the nanoparticles and that the onset of the nematic phase is observed in the form of bubble-like domains whereas in the pure sample the nematic phase appears after the passing of a phase transition front. Transmission electron microscopy confirmed the presence of single nano-sized particles that were dispersed without forming aggregates in the material. The electro-optic properties of the nanoparticle-dispersed liquid crystal was investigated by measuring the threshold voltage for a twisted-nematic cell. The threshold voltage was found to depend on the frequency of the applied rectangular voltage, and at frequencies higher than 200 Hz, the threshold became lower than the pure samples.

  • Subcarrier Power Allocation in OFDM-Based Dual-Hop Systems with AF Relaying

    Wei-Chieh HUANG  Kuan-Chou LEE  Chih-Peng LI  Hsueh-Jyh LI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:11
      Page(s):
    3184-3188

    This letter examines the problem of allocating the subcarrier power of the relayed signal in orthogonal frequency division multiplexing (OFDM) based dual-hop systems in which the relay terminal is operated in an Amplify-and-Forward (AF) mode and the source node transmits its signal with a uniform power distribution. In AF relaying systems, both the modulation order and the error control scheme are fixed at the relay node, and thus the potential for increasing the data rate via a suitable allocation of the subcarrier power at the relay node does not exist. Therefore, this study proposes an alternative subcarrier power allocation scheme in which the objective is to scale the power assigned to each of the relayed signal sub-carriers in such a way as to minimize the equivalent average noise power at the destination terminal.

  • A Self-Calibration Technique for Capacitor Mismatch Errors of an Interleaved SAR ADC

    Yasuhide KURAMOCHI  Masayuki KAWABATA  Kouichiro UEKUSA  Akira MATSUZAWA  

     
    PAPER-Electronic Circuits

      Vol:
    E93-C No:11
      Page(s):
    1630-1637

    We present self-calibration techniques for an interleaved SAR (Successive Approximation Register) ADC. The calibration technique is based on hardware corrections for linearity of single stage, gain error and mismatch errors of parallel ADCs. The 4-interleaved 11-bit ADC has been fabricated in a 0.18-µm CMOS process. Using the calibrations, measurement and calculation results show that the differences of ramp characteristic among the 4-interleaving ADC can be decresased to under 0.63 LSB.

  • Fast Self-Expansion of Sensing Coverage in Autonomous Mobile Sensor Networks

    Youn-Hee HAN  Heon-Jong LEE  Sung-Gi MIN  

     
    LETTER-Network

      Vol:
    E93-B No:11
      Page(s):
    3148-3151

    Random scattering of sensors may cause some location not to be covered. In such a case, it is useful to make use of mobile sensors that can move to eliminate the coverage holes. Wang et al [1]. proposed self-deployment schemes of mobile sensors by using Voronoi polygon. However, some coverage holes still remain after the execution of the schemes. We propose a new self-deployment scheme using the centroid (geometric center) of each sensor's Voronoi polygon as the moving target position. The performance evaluation shows that the proposed scheme achieves better results than the existing schemes in terms of fast coverage expansion.

  • Sampling Point Selection Scheme for Fractional Sampling-OFDM Receivers on Fast Time-Varying Multipath Channels

    Tatsuya KOBAYASHI  Haruki NISHIMURA  Yukitoshi SANADA  

     
    PAPER

      Vol:
    E93-A No:11
      Page(s):
    2122-2129

    Fractional sampling (FS) and Doppler diversity equalization in OFDM receivers can achieve two types of diversity (path diversity and frequency diversity) simultaneously on time-varying multipath channels. However FS with a higher sampling rate requires the large amount of complexity in demodulation. In this paper, a novel sampling point selection (SPS) scheme with MMSE equalization in FS-OFDM receivers is proposed. On fast time-varying multipath channels, the proposed scheme selects the appropriate samples from the fractionally sampled signals. Through the computer simulation, it is demonstrated that with the proposed scheme, both path diversity gain and Doppler diversity gain can increase as compared to a conventional non-SPS scheme.

  • 3D Sound Rendering for Multiple Sound Sources Based on Fuzzy Clustering

    Masashi OKADA  Nobuyuki IWANAGA  Tomoya MATSUMURA  Takao ONOYE  Wataru KOBAYASHI  

     
    PAPER

      Vol:
    E93-A No:11
      Page(s):
    2163-2172

    In this paper, we propose a new 3D sound rendering method for multiple sound sources with limited computational resources. The method is based on fuzzy clustering, which achieves dual benefits of two general methods based on amplitude-panning and hard clustering. In embedded systems where the number of reproducible sound sources is restricted, the general methods suffer from localization errors and/or serious quality degradation, whereas the proposed method settles the problems by executing clustering-process and amplitude-panning simultaneously. Computational cost evaluation based on DSP implementation and subjective listening test have been performed to demonstrate the applicability for embedded systems and the effectiveness of the proposed method.

  • Multichannel Random Access Protocol with Capture Effect for Cellular Relaying Networks

    Sunghyun CHO  Young-Ho JUNG  Cheolwoo YOU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:11
      Page(s):
    3093-3101

    This paper proposes a stabilized multichannel random access protocol based on slotted ALOHA for relay deployed cellular networks. To ensure the stability of random access, the proposed protocol dynamically controls the number of random access channels in a BS and a RS and the retransmission probability of the random access packets under heavy load conditions. A mathematical formula is also developed that derives an optimal partition ratio of the shared random access channels between a base station and a relay station without and with capture effect. Numerical results show that the proposed protocol can guarantee the required utilization and delay even in high offered load, which otherwise can cause bistable problem of slotted ALOHA.

  • Vulnerability of MRD-Code-based Universal Secure Network Coding against Stronger Eavesdroppers

    Eitaro SHIOJI  Ryutaroh MATSUMOTO  Tomohiko UYEMATSU  

     
    PAPER-Cryptography and Information Security

      Vol:
    E93-A No:11
      Page(s):
    2026-2033

    Silva et al. proposed a universal secure network coding scheme based on MRD codes, which can be applied to any underlying network code. This paper considers a stronger eavesdropping model where the eavesdroppers possess the ability to re-select the tapping links during the transmission. We give a proof for the impossibility of attaining universal security against such adversaries using Silva et al.'s code for all choices of code parameters, even with a restricted number of tapped links. We also consider the cases with restricted tapping duration and derive some conditions for this code to be secure.

7861-7880hit(20498hit)