The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

7921-7940hit(20498hit)

  • Analysis to Random Direction Model of Ad-Hoc Networks

    Yan-tao LIU  Ji-hua LU  Heng LIU  

     
    LETTER-Network

      Vol:
    E93-B No:10
      Page(s):
    2773-2776

    The asymptotic properties of node distribution and speed distribution in random direction model were analyzed, respectively, by the tools of geometric probability and palm calculus. The probability density function for node distribution in circular regions was obtained which indicated that mobile nodes tended to disperse as simulation advancing. The speed decay phenomenon was confirmed in this model. Moreover, the hypostasis of speed decay was proved to be the correlation between speed and duration within any movement period.

  • Metamaterial-Based Microstrip Antenna Using Slot-Embedded Ground Plane for Bandwidth Improvements

    Seongmin PYO  Min-Jae LEE  Young-Sik KIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E93-B No:10
      Page(s):
    2784-2786

    In this letter, a new design of a metamaterial-based microstrip antenna is presented using triangular slots embedded on the ground plane to enhance the impedance bandwidth. To improve the impedance bandwidth of the proposed antenna, two resonant mode frequencies are closely allocated using the slotted ground without changing the radiator element. The impedance bandwidth of VSWR < 2.5 is measured at 2.43 GHz (37.6%) centered on 6.46 GHz, from 5.24 GHz to 7.67 GHz in good agreements with the simulated results.

  • Planar Waveguide Arrays for Millimeter Wave Systems Open Access

    Makoto ANDO  

     
    INVITED PAPER

      Vol:
    E93-B No:10
      Page(s):
    2504-2513

    Design of high gain and high efficiency antennas is one of the key challenges in antenna engineering and especially in millimeter wave communication systems. Various types of planar waveguide arrays with series-fed traveling wave operation have been developed in Tokyo Tech with the special focus upon efficiency enhancement as well as reduction of fabrication cost. In this review, four kinds of single layer waveguide arrays characterized with the series fed travelling wave operation are surveyed first. To cope with the bandwidth narrowing effects due to long line effects associated with the series fed operation, authors have introduced partially corporate feed embedded in the single layer waveguide. They further extended the study to cover fully corporate feed arrays with multiple layer waveguide as well; a new fabrication technique of diffusion bonding of laminated thin plates has the potential to realize the low cost mass production of multi-layer structures for the millimeter wave application. Secondly, the novel methods for loss evaluation of copper plate substrate are established for the design of post-wall waveguide arrays where dielectric loss and conductor loss is determined in wide range of millimeter wave band, by using the Whispering gallery mode resonator. This enables us to design the planar arrays with the loss taken into account. Finally, the planar arrays are now applied to two kinds of systems in the Tokyo Tech millimeter wave project; the indoor short range file-transfer systems and the outdoor communication systems for the medium range backhaul links. The latter has been field-tested in the model network built in Tokyo Tech Ookayama campus. Early stage progress of the project including unique propagation data is also reported.

  • Opto-Thermal Analysis of Blue Multi Laser Diode Annealing (BLDA)

    Katsuya SHIRAI  Takashi NOGUCHI  Yoshiaki OGINO  Eiji SAHOTA  

     
    PAPER

      Vol:
    E93-C No:10
      Page(s):
    1499-1503

    Opto-Thermal analysis of Semiconductor Blue-Multi-Laser-Diode Annealing (BLDA) for amorphous Si (a-Si) film is conducted by varying the irradiation power, the scanning velocity and the beam shape of blue-laser of 445 nm. Thermal profiles, maximum temperature of the a-Si film and the melting duration are evaluated. By comparing the simulated results with the experimental results, the excellent controllability of BLDA for arbitrary grain size can be explained consistently by the relation between irradiation time and melting duration. The results are useful to estimate poly-crystallized phase such as micro-polycrystalline Si, polycrystalline Si and anisotropic lateral growth of single-crystal-like Si.

  • Improving Proximity and Diversity in Multiobjective Evolutionary Algorithms

    Chang Wook AHN  Yehoon KIM  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E93-D No:10
      Page(s):
    2879-2882

    This paper presents an approach for improving proximity and diversity in multiobjective evolutionary algorithms (MOEAs). The idea is to discover new nondominated solutions in the promising area of search space. It can be achieved by applying mutation only to the most converged and the least crowded individuals. In other words, the proximity and diversity can be improved because new nondominated solutions are found in the vicinity of the individuals highly converged and less crowded. Empirical results on multiobjective knapsack problems (MKPs) demonstrate that the proposed approach discovers a set of nondominated solutions much closer to the global Pareto front while maintaining a better distribution of the solutions.

  • Analysis Based on Moment Vector Equation for Interacting Identical Elements with Nonlinear Dynamics

    Hideki SATOH  

     
    PAPER-Nonlinear Problems

      Vol:
    E93-A No:10
      Page(s):
    1765-1774

    A method was developed for analyzing a system comprised of identical and indistinguishable elements with nonlinear dynamics. First, a moment vector equation (MVE) for the system was derived so as to avoid the curse of dimensionality by using the property that the elements are identical and indistinguishable. Next, an algorithm was developed to solve the MVE for deriving the moment vector in a steady state. It effectively uses eigen analysis on the basis of the property of the MVE. It can thus be used to clarify the structure of the solutions in the moment vector space and to derive multiple solutions by setting the initial value to the moment vector orthogonal to the solutions already obtained. Finally, the probability density function (pdf) for the state of the system was derived using the moment vectors in a steady state. Comparison of the pdfs thereby derived with those derived using numerical simulation showed that the method provided good approximations of the pdfs. Moreover, multiple solutions that are difficult to do using numerical simulation were derived.

  • Leaky Wave Antenna Using Composite Right/Left-Handed Transmission Line Composed of Ladder Network for UHF Band

    Shinji KAMADA  Naobumi MICHISHITA  Yoshihide YAMADA  

     
    PAPER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2562-2569

    Broadband antennas have various applications in digital terrestrial television (DTV) services. Compact broadband antennas are required for arranging in long and narrow space along the rim of a laptop display. A leaky-wave antenna using the composite right/left-handed transmission line (CRLH-TL) is one of the candidates for achieving the broadband antenna. However, there are not enough to design guideline of small leaky wave antennas using the CRLH-TL for UHF band. In this paper, a CRLH-TL comprising a ladder network is proposed for broadband and simple structure. The paper also discusses the design of a leaky-wave antenna with the CRLH-TL operating in the DTV band. The relation between the operating bandwidth and attenuation constant of the CRLH-TL is discussed. An antenna that can be accommodated in the limited and narrow space available in mobile terminals has to be designed. Hence, the effects of the number of cells and a finite ground plane are discussed with the purpose of achieving the miniaturization of the antenna. In this study, the transmission and radiation characteristics of the fabricated antennas are measured. The gain of the fabricated antenna is confirmed to remain almost constant even when the operating frequency is varied. The maximum gain and operating band achieved in this study are approximately -0.6 dBi and about 54%, respectively.

  • Dual Band Hybrid Dielectric Resonator Antenna for Application in ISM and UNII Band

    Yen-Nien WANG  Yih-Chien CHEN  Kai-Hao CHEN  

     
    LETTER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2662-2665

    The hybrid antenna consisted of cylindrical dielectric resonator and rectangular slot was implemented. The hybrid antenna resonated at two different frequencies. The lower resonant frequency was associated with the rectangular slot while the higher resonant frequency was associated with the cylindrical dielectric resonator. Parametric investigation was carried out using simulation software. The proposed hybrid antenna had good agreement between the simulation and measurement results. A 24% bandwidth (return loss < 10 dB) of 2.30 GHz, and a 18% bandwidth (return loss < 10 dB) of 5.46 GHz was implemented successfully for application in ISM and UNII band.

  • Heuristic Sizing Methodology for Designing High-Performance CMOS Level Converters with Balanced Rise and Fall Delays

    Jinn-Shyan WANG  Yu-Juey CHANG  Chingwei YEH  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E93-C No:10
      Page(s):
    1540-1543

    CMOS SoCs can reduce power consumption by adopting voltage scaling (VS) technologies, where the level converter (LC) is required between voltage domains to avoid dc current. However, the LC often induces high delay penalty and usually results in non-balanced rise and fall delays. Therefore, the performance of the LC strongly affects the effectiveness of VS technologies. In this paper, heuristic sizing methodology for designing a state-of-the-art LC is developed and proposed. Using the proposed methodology, we can design the LC to achieve high performance with balanced rise and fall delay times in a deterministic way.

  • KMCD-IME (Keeping the Maximum Communication Distance and Initial Mutual Exclusion among Router Nodes) Topology Control Algorithm for Effective Routing in ZigBee Networks

    Saeyoung AHN  Sunshin AN  

     
    LETTER-Topology Control

      Vol:
    E93-A No:10
      Page(s):
    1744-1747

    In a ZigBee network, a finite address space is allocated to every potential parent device and a device may disallow a join request once this address space is exhausted. When a new node (child) requests to a coordinator (parent) to join a ZigBee network, the coordinator checks its address space. If it has sufficient address space, the coordinator accepts the new node as its child in the ZigBee network. If the new node has router capability (JoinAsRouter), it becomes a router in the ZigBee network. However, this association procedure makes ZigBee networks inefficient for routing, because the coordinator checks only the maximum and current numbers of child nodes. In the worst case, the network will be arranged so that the router nodes are crowded in the network. Therefore, we propose the KMCD-IME (Keeping the Maximum Communication Distance and Initial Mutual Exclusion among router nodes) algorithm with two additional conditions when a new node joins the ZigBee network. The first condition maintains the maximum communication distance between the new node and the would-be parent node. The second condition is the Initial Mutual Exclusion among router nodes. The router nodes are evenly spread across the network by KMCD-IME and an effective routing topology is formed. Therefore, the KMCD-IME algorithm extends the lifetime of the ZigBee network.

  • Bandwidth and Gain Enhancement of Microstrip Patch Antennas Using Reflective Metasurface Open Access

    Sarawuth CHAIMOOL  Kwok L. CHUNG  Prayoot AKKARAEKTHALIN  

     
    INVITED PAPER

      Vol:
    E93-B No:10
      Page(s):
    2496-2503

    Bandwidth and gain enhancement of microstrip patch antennas (MPAs) is proposed using reflective metasurface (RMS) as a superstrate. Two different types of the RMS, namely- the double split-ring resonator (DSR) and double closed-ring resonator (DCR) are separately investigated. The two antenna prototypes were manufactured, measured and compared. The experimental results confirm that the RMS loaded MPAs achieve high-gain as well as bandwidth improvement. The desinged antenna using the RMS as a superstrate has a high-gain of over 9.0 dBi and a wide impedance bandwidth of over 13%. The RMS is also utilized to achieve a thin antenna with a cavity height of 6 mm, which is equivalent to λ/21 at the center frequency of 2.45 GHz. At the same time, the cross polarization level and front-to-back ratio of these antennas are also examined.

  • Image Contrast Enhancement by Global and Local Adjustment of Gray Levels

    Na DUAN  Soon Hak KWON  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E93-D No:10
      Page(s):
    2866-2869

    Various contrast enhancement methods such as histogram equalization (HE) and local contrast enhancement (LCE) have been developed to increase the visibility and details of a degraded image. We propose an image contrast enhancement method based on the global and local adjustment of gray levels by combining HE with LCE methods. For the optimal combination of both, we introduce a discrete entropy. Evaluation of our experimental results shows that the proposed method outperforms both the HE and LCE methods.

  • Performance Analysis of Alamouti Scheme in Time-Varying and Spatially Correlated Channels

    Eunju LEE  Jaedon PARK  Giwan YOON  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2804-2807

    In this paper, we analyze the performance of the 21 Alamouti scheme suggested by Alamouti, composed of the transmit space-time code and the simple linear decoding processing, in perfectly time-varying and spatially correlated channels. We derive the closed-form probability density function (PDF) of output signal-to-noise ratio (SNR) and outage probability of the Alamouti scheme as a function of spatial correlation coefficient in the consideration of no correlation in time. We observe that the performance of the Alamouti scheme is severely degraded when the channels are time-varying and spatially correlated.

  • Distributed Switch and Stay Combining with Partial Relay Selection over Rayleigh Fading Channels

    Vo Nguyen Quoc BAO  Hyung Yun KONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2795-2799

    Switch and stay combining (SSC) is an attractive diversity technique due to its low complexity and compatibility to resource-constrained wireless networks. This letter proposes a distributed SSC for partial relay selection networks in order to achieve spatial diversity as well as to improve spectral efficiency. Simulation results show that the performance loss (in terms of bit error probability) of the proposed networks relative to partial relay selection networks with selection combining is not substantial.

  • Static Task Scheduling Algorithms Based on Greedy Heuristics for Battery-Powered DVS Systems

    Tetsuo YOKOYAMA  Gang ZENG  Hiroyuki TOMIYAMA  Hiroaki TAKADA  

     
    PAPER-Software System

      Vol:
    E93-D No:10
      Page(s):
    2737-2746

    The principles for good design of battery-aware voltage scheduling algorithms for both aperiodic and periodic task sets on dynamic voltage scaling (DVS) systems are presented. The proposed algorithms are based on greedy heuristics suggested by several battery characteristics and Lagrange multipliers. To construct the proposed algorithms, we use the battery characteristics in the early stage of scheduling more properly. As a consequence, the proposed algorithms show superior results on synthetic examples of periodic and aperiodic tasks from the task sets which are excerpted from the comparative work, on uni- and multi-processor platforms, respectively. In particular, for some large task sets, the proposed algorithms enable previously unschedulable task sets due to battery exhaustion to be schedulable.

  • Three-Dimensional Electromagnetic Scattering Analysis Using Constrained Interpolation Profile Method

    Jerdvisanop CHAKAROTHAI  Qiang CHEN  Kunio SAWAYA  

     
    PAPER-Electromagnetic Analysis

      Vol:
    E93-B No:10
      Page(s):
    2619-2628

    A characteristic-based constrained interpolation profile (CIP) method for solving three-dimensional, time-dependent Maxwell's equations is successfully developed. It is utilized to solve one-dimensional wave equations in the formulation of the Maxwell's equations. Calculation procedure of the CIP method for three-dimensional scattering analysis is described in details. Update equations for boundary conditions of a perfectly conducting (PEC) interface and a dielectric interface are formulated and obtained in explicit forms. Numerical analyses of electromagnetic scatterings of PEC sphere, dielectric sphere and PEC cube are performed and the scattering coefficient is calculated and compared with the Mie's analytic results. As a result, the scattering coefficients show good agreement with the Mie's results, which demonstrates the validity of the CIP method and the formulated update equations. It is also shown that the phase of the scattering coefficients determined by the CIP method are slightly more accurate than that of the FDTD method.

  • Grid Network Service-Web Services Interface Version 2 Achieving Scalable Reservation of Network Resources Across Multiple Network Domains via Management Plane

    Yukio TSUKISHIMA  Michiaki HAYASHI  Tomohiro KUDOH  Akira HIRANO  Takahiro MIYAMOTO  Atsuko TAKEFUSA  Atsushi TANIGUCHI  Shuichi OKAMOTO  Hidemoto NAKADA  Yasunori SAMESHIMA  Hideaki TANAKA  Fumihiro OKAZAKI  Masahiko JINNO  

     
    PAPER-Network

      Vol:
    E93-B No:10
      Page(s):
    2696-2705

    Platforms of hosting services are expected to provide a virtual private computing infrastructure with guaranteed levels of performance to support each reservation request sent by a client. To enhance the performance of the computing infrastructure in responding to reservation requests, the platforms are required to reserve, coordinate, and control globally distributed computing and network resources across multiple domains. This paper proposes Grid Network Service -- Web Services Interface version 2 (GNS-WSI2). GNS-WSI2 is a resource-reservation messaging protocol that establishes a client-server relationship. A server is a kind of management system in the management plane, and it allocates available network resources within its own domain in response to each reservation request from a client. GNS-WSI2 has the ability to reserve network resources rapidly and reliably over multiple network domains. This paper also presents the results of feasibility tests on a transpacific testbed that validate GNS-WSI2 in terms of the scalable reservation of network resources over multiple network domains. In the tests, two computing infrastructures over multiple network domains are dynamically provided for scientific computing and remote-visualization applications. The applications are successfully executed on the provided infrastructures.

  • Genetic Algorithm Based Equalizer for Ultra-Wideband Wireless Communication Systems

    Nazmat SURAJUDEEN-BAKINDE  Xu ZHU  Jingbo GAO  Asoke K. NANDI  Hai LIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2725-2734

    In this paper, we propose a genetic algorithm (GA) based equalization approach for direct sequence ultra-wideband (DS-UWB) wireless communication systems, where the GA is combined with a RAKE receiver to combat the inter-symbol interference (ISI) due to the frequency selective nature of UWB channels for high data rate transmission. The proposed GA based equalizer outperforms significantly the RAKE and the RAKE-minimum mean square error (MMSE) receivers according to results obtained from intensive simulation work. The RAKE-GA receiver also provides bit-error-rate (BER) performance very close to that of the optimal RAKE-maximum likelihood detection (MLD) approach, while offering a much lower computational complexity.

  • Accurate Human Detection by Appearance and Motion

    Shaopeng TANG  Satoshi GOTO  

     
    PAPER

      Vol:
    E93-D No:10
      Page(s):
    2728-2736

    In this paper, a human detection method is developed. An appearance based detector and a motion based detector are proposed respectively. A multi scale block histogram of template feature (MB-HOT) is used to detect human by the appearance. It integrates the gray value information and the gradient value information, and represents the relationship of three blocks. Experiment on INRIA dataset shows that this feature is more discriminative than other features, such as histogram of orientation gradient (HOG). A motion based feature is also proposed to capture the relative motion of human body. This feature is calculated in optical flow domain and experimental result in our dataset shows that this feature outperforms other motion based features. The detection responses obtained by two features are combined to reduce the false detection. Graphic process unit (GPU) based implementation is proposed to accelerate the calculation of two features, and make it suitable for real time applications.

  • Accurate Estimation of the Number of Weak Coherent Signals

    Masashi TSUJI  Kenta UMEBAYASHI  Yukihiro KAMIYA  Yasuo SUZUKI  

     
    PAPER-Antennas and Propagation

      Vol:
    E93-B No:10
      Page(s):
    2715-2724

    Estimating the number of signals (NIS) is an important goal in array signal processing, such as direction-of-arrival (DOA) estimation. A common approach for solving this problem is to use an eigenvalue of the array covariance matrix and information criterion, such as the Akaike information criterion (AIC) and minimum description length (MDL). However they suffer serious degradation, when the incoming signals are coherent. To estimate the NIS of the coherent signals impinging on a uniform linear array (ULA), a method for estimating the number of signals without eigendecomposition (MENSE) is proposed. The accuracy of the NIS estimation performance of MENSE is superior to the other algorithms equipped with preprocessing such as the spatial smoothing preprocessing (SSP) and forward/backward spatial smoothing techniques (FBSS) to decorrelate the coherency of signals. Instead of using SSP or FBSS preprocessing, MENSE uses the Hankel correlation matrices. The Hankel correlation matrices can not only decorrelate the coherency of signals but also suppress the influence of noise. However, in severe conditions like low signal-to-noise ratio (SNR) or a closely spaced signals impinging on a ULA, the NIS estimation metric of MENSE has some bias which causes estimation error. In this paper, we pay attention to the multiplicity defined by the ratio of the geometric mean to the arithmetic mean. Accordingly, we propose a new estimation metric that has less bias than that in MENSE. The Computer simulation results show that the proposed method is superior to MENSE in the above severe conditions.

7921-7940hit(20498hit)