The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

7941-7960hit(20498hit)

  • Planar Waveguide Arrays for Millimeter Wave Systems Open Access

    Makoto ANDO  

     
    INVITED PAPER

      Vol:
    E93-B No:10
      Page(s):
    2504-2513

    Design of high gain and high efficiency antennas is one of the key challenges in antenna engineering and especially in millimeter wave communication systems. Various types of planar waveguide arrays with series-fed traveling wave operation have been developed in Tokyo Tech with the special focus upon efficiency enhancement as well as reduction of fabrication cost. In this review, four kinds of single layer waveguide arrays characterized with the series fed travelling wave operation are surveyed first. To cope with the bandwidth narrowing effects due to long line effects associated with the series fed operation, authors have introduced partially corporate feed embedded in the single layer waveguide. They further extended the study to cover fully corporate feed arrays with multiple layer waveguide as well; a new fabrication technique of diffusion bonding of laminated thin plates has the potential to realize the low cost mass production of multi-layer structures for the millimeter wave application. Secondly, the novel methods for loss evaluation of copper plate substrate are established for the design of post-wall waveguide arrays where dielectric loss and conductor loss is determined in wide range of millimeter wave band, by using the Whispering gallery mode resonator. This enables us to design the planar arrays with the loss taken into account. Finally, the planar arrays are now applied to two kinds of systems in the Tokyo Tech millimeter wave project; the indoor short range file-transfer systems and the outdoor communication systems for the medium range backhaul links. The latter has been field-tested in the model network built in Tokyo Tech Ookayama campus. Early stage progress of the project including unique propagation data is also reported.

  • Efficient Distributed Web Crawling Utilizing Internet Resources

    Xiao XU  Weizhe ZHANG  Hongli ZHANG  Binxing FANG  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E93-D No:10
      Page(s):
    2747-2762

    Internet computing is proposed to exploit personal computing resources across the Internet in order to build large-scale Web applications at lower cost. In this paper, a DHT-based distributed Web crawling model based on the concept of Internet computing is proposed. Also, we propose two optimizations to reduce the download time and waiting time of the Web crawling tasks in order to increase the system's throughput and update rate. Based on our contributor-friendly download scheme, the improvement on the download time is achieved by shortening the crawler-crawlee RTTs. In order to accurately estimate the RTTs, a network coordinate system is combined with the underlying DHT. The improvement on the waiting time is achieved by redirecting the incoming crawling tasks to light-loaded crawlers in order to keep the queue on each crawler equally sized. We also propose a simple Web site partition method to split a large Web site into smaller pieces in order to reduce the task granularity. All the methods proposed are evaluated through real Internet tests and simulations showing satisfactory results.

  • Opto-Thermal Analysis of Blue Multi Laser Diode Annealing (BLDA)

    Katsuya SHIRAI  Takashi NOGUCHI  Yoshiaki OGINO  Eiji SAHOTA  

     
    PAPER

      Vol:
    E93-C No:10
      Page(s):
    1499-1503

    Opto-Thermal analysis of Semiconductor Blue-Multi-Laser-Diode Annealing (BLDA) for amorphous Si (a-Si) film is conducted by varying the irradiation power, the scanning velocity and the beam shape of blue-laser of 445 nm. Thermal profiles, maximum temperature of the a-Si film and the melting duration are evaluated. By comparing the simulated results with the experimental results, the excellent controllability of BLDA for arbitrary grain size can be explained consistently by the relation between irradiation time and melting duration. The results are useful to estimate poly-crystallized phase such as micro-polycrystalline Si, polycrystalline Si and anisotropic lateral growth of single-crystal-like Si.

  • Equivalent Noise Temperature Representation for Scaled MOSFETs

    Hiroshi SHIMOMURA  Kuniyuki KAKUSHIMA  Hiroshi IWAI  

     
    LETTER-Semiconductor Materials and Devices

      Vol:
    E93-C No:10
      Page(s):
    1550-1552

    We proposed a novel representation of the thermal noise for scaled MOSFETs by applying an extended van der Ziel's model. A comparison between the proposed representation and Pospieszalski's model is also performed. We confirmed that the representation of drain noise temperature, Td corresponds to the electron temperature in a gradual channel region.

  • A Coaxial Feeder with Two Pairs of Parasitic Pins for Realizing Rotationally Symmetric Aperture Illumination in Spiral Array Radial Line Slot Antennas

    Hideki UEDA  Jiro HIROKAWA  Makoto ANDO  Matteo ALBANI  

     
    PAPER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2554-2561

    A spiral array radial line slot antenna (SA-RLSA) is designed in 22 GHz band. A SA-RLSA excited with a coaxial feeder suffers from aperture illumination fluctuation in amplitude and phase in the circumferential (φ-) direction while in the radial direction, reasonably uniform distribution is observed. Rotational symmetry of radiation patterns is degraded and especially the sidelobe levels are unbalanced. This fluctuation is associated with the generation of the higher order modes in the φ-direction and is the unique defect of SA-RLSA which uses oversized waveguide. In this paper, a novel feeding structure with two pairs of parasitic pins around a coaxial feeder is proposed and designed so as to compensate the rotational asymmetry of aperture illumination. A measurement using the model antenna designed in 22 GHz band demonstrates the enhancement of the rotational symmetry; the circumferential fluctuation is reduced from 5.1 dB and 33 degrees to 1.8 dB and 12 degrees, while the fluctuation in the first sidelobe level suppressed from 10.7 dB to 1.2 dB.

  • Accurate Signal-to-Noise Analysis of Derivative and Quadrature Differential FM Discriminators Based on Multi-Sinusoidal AWGN Representation

    Apisak WORAPISHET  Tanee DEMEECHAI  

     
    PAPER-Analog Signal Processing

      Vol:
    E93-A No:10
      Page(s):
    1755-1764

    The noise performances under AWGN channel of the IF-derivative and the quadrature differential FM discriminators, which are widely utilized in modern low power wireless radios, are analyzed and compared. The analysis relies upon the time-domain multi-sinusoidal representation of the noise that facilitates accurate and closed-form analytical SNR characteristics. Derivation of the SNR equations is detailed and discussion based on the analysis results is given to provide insights into the discriminators' performance limitation where it is demonstrated that the differential scheme is considerably more advantageous. Simulated SNR characteristics of practical continuous-phase frequency shift keying (CPFSK) systems using both the FM discriminators are presented as analysis verification.

  • Optimization without Minimization Search: Constraint Satisfaction by Orthogonal Projection with Applications to Multiview Triangulation

    Kenichi KANATANI  Yasuyuki SUGAYA  Hirotaka NIITSUMA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E93-D No:10
      Page(s):
    2836-2845

    We present an alternative approach to what we call the "standard optimization", which minimizes a cost function by searching a parameter space. Instead, our approach "projects" in the joint observation space onto the manifold defined by the "consistency constraint", which demands that any minimal subset of observations produce the same result. This approach avoids many difficulties encountered in the standard optimization. As typical examples, we apply it to line fitting and multiview triangulation. The latter produces a new algorithm far more efficient than existing methods. We also discuss the optimality of our approach.

  • Visual Knowledge Structure Reasoning with Intelligent Topic Map

    Huimin LU  Boqin FENG  Xi CHEN  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E93-D No:10
      Page(s):
    2805-2812

    This paper presents a visual knowledge structure reasoning method using Intelligent Topic Map which extends the conventional Topic Map in structure and enhances its reasoning functions. Visual knowledge structure reasoning method integrates two types of knowledge reasoning: the knowledge logical relation reasoning and the knowledge structure reasoning. The knowledge logical relation reasoning implements knowledge consistency checking and the implicit associations reasoning between knowledge points. We propose a Knowledge Unit Circle Search strategy for the knowledge structure reasoning. It implements the semantic implication extension, the semantic relevant extension and the semantic class belonging confirmation. Moreover, the knowledge structure reasoning results are visualized using ITM Toolkit. A prototype system of visual knowledge structure reasoning has been implemented and applied to the massive knowledge organization, management and service for education.

  • Phase Portrait Analysis for Multiresolution Generalized Gradient Vector Flow

    Sirikan CHUCHERD  Annupan RODTOOK  Stanislav S. MAKHANOV  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E93-D No:10
      Page(s):
    2822-2835

    We propose a modification of the generalized gradient vector flow field techniques based on multiresolution analysis and phase portrait techniques. The original image is subjected to mutliresolutional analysis to create a sequence of approximation and detail images. The approximations are converted into an edge map and subsequently into a gradient field subjected to the generalized gradient vector flow transformation. The procedure removes noise and extends large gradients. At every iteration the algorithm obtains a new, improved vector field being filtered using the phase portrait analysis. The phase portrait is applied to a window with a variable size to find possible boundary points and the noise. As opposed to previous phase portrait techniques based on binary rules our method generates a continuous adjustable score. The score is a function of the eigenvalues of the corresponding linearized system of ordinary differential equations. The salient feature of the method is continuity: when the score is high it is likely to be the noisy part of the image, but when the score is low it is likely to be the boundary of the object. The score is used by a filter applied to the original image. In the neighbourhood of the points with a high score the gray level is smoothed whereas at the boundary points the gray level is increased. Next, a new gradient field is generated and the result is incorporated into the iterative gradient vector flow iterations. This approach combined with multiresolutional analysis leads to robust segmentations with an impressive improvement of the accuracy. Our numerical experiments with synthetic and real medical ultrasound images show that the proposed technique outperforms the conventional gradient vector flow method even when the filters and the multiresolution are applied in the same fashion. Finally, we show that the proposed algorithm allows the initial contour to be much farther from the actual boundary than possible with the conventional methods.

  • A Hybrid Speech Emotion Recognition System Based on Spectral and Prosodic Features

    Yu ZHOU  Junfeng LI  Yanqing SUN  Jianping ZHANG  Yonghong YAN  Masato AKAGI  

     
    PAPER-Human-computer Interaction

      Vol:
    E93-D No:10
      Page(s):
    2813-2821

    In this paper, we present a hybrid speech emotion recognition system exploiting both spectral and prosodic features in speech. For capturing the emotional information in the spectral domain, we propose a new spectral feature extraction method by applying a novel non-uniform subband processing, instead of the mel-frequency subbands used in Mel-Frequency Cepstral Coefficients (MFCC). For prosodic features, a set of features that are closely correlated with speech emotional states are selected. In the proposed hybrid emotion recognition system, due to the inherently different characteristics of these two kinds of features (e.g., data size), the newly extracted spectral features are modeled by Gaussian Mixture Model (GMM) and the selected prosodic features are modeled by Support Vector Machine (SVM). The final result of the proposed emotion recognition system is obtained by combining the results from these two subsystems. Experimental results show that (1) the proposed non-uniform spectral features are more effective than the traditional MFCC features for emotion recognition; (2) the proposed hybrid emotion recognition system using both spectral and prosodic features yields the relative recognition error reduction rate of 17.0% over the traditional recognition systems using only the spectral features, and 62.3% over those using only the prosodic features.

  • Acceleration of Differential Power Analysis through the Parallel Use of GPU and CPU

    Sung Jae LEE  Seog Chung SEO  Dong-Guk HAN  Seokhie HONG  Sangjin LEE  

     
    LETTER-Cryptography and Information Security

      Vol:
    E93-A No:9
      Page(s):
    1688-1692

    This paper proposes methods for accelerating DPA by using the CPU and the GPU in a parallel manner. The overhead of naive DPA evaluation software increases excessively as the number of points in a trace or the number of traces is enlarged due to the rapid increase of file I/O overhead. This paper presents some techniques, with respect to DPA-arithmetic and file handling, which can make the overhead of DPA software become not extreme but gradual as the increase of the amount of trace data to be processed. Through generic experiments, we show that the software, equipped with the proposed methods, using both CPU and GPU can shorten the time for evaluating the DPA resistance of devices by almost half.

  • A Parallel Transmission Scheme for All-to-All Broadcast in Underwater Sensor Networks

    Soonchul PARK  Jaesung LIM  

     
    PAPER-Network

      Vol:
    E93-B No:9
      Page(s):
    2309-2315

    This paper is concerned with the packet transmission scheduling problem for repeating all-to-all broadcasts in Underwater Sensor Networks (USN) in which there are n nodes in a transmission range. All-to-all communication is one of the most dense communication patterns. It is assumed that each node has the same size packet. Unlike the terrestrial scenarios, the propagation time in underwater communications is not negligible. We define all-to-all broadcast as the one where every node transmits packets to all the other nodes in the network except itself. So, there are in total n(n - 1) packets to be transmitted for an all-to-all broadcast. The optimal transmission scheduling is to schedule in a way that all packets can be transmitted within the minimum time. In this paper, we propose an efficient packet transmission scheduling algorithm for underwater acoustic communications using the property of long propagation delay.

  • Reliable Wireless Broadcast with Linear Network Coding for Multipoint-to-Multipoint Real-Time Communications

    Yoshihisa KONDO  Hiroyuki YOMO  Shinji YAMAGUCHI  Peter DAVIS  Ryu MIURA  Sadao OBANA  Seiichi SAMPEI  

     
    PAPER-Network

      Vol:
    E93-B No:9
      Page(s):
    2316-2325

    This paper proposes multipoint-to-multipoint (MPtoMP) real-time broadcast transmission using network coding for ad-hoc networks like video game networks. We aim to achieve highly reliable MPtoMP broadcasting using IEEE 802.11 media access control (MAC) that does not include a retransmission mechanism. When each node detects packets from the other nodes in a sequence, the correctly detected packets are network-encoded, and the encoded packet is broadcasted in the next sequence as a piggy-back for its native packet. To prevent increase of overhead in each packet due to piggy-back packet transmission, network coding vector for each node is exchanged between all nodes in the negotiation phase. Each user keeps using the same coding vector generated in the negotiation phase, and only coding information that represents which user signal is included in the network coding process is transmitted along with the piggy-back packet. Our simulation results show that the proposed method can provide higher reliability than other schemes using multi point relay (MPR) or redundant transmissions such as forward error correction (FEC). We also implement the proposed method in a wireless testbed, and show that the proposed method achieves high reliability in a real-world environment with a practical degree of complexity when installed on current wireless devices.

  • BS-CPA: Built-In Determined Sub-Key Correlation Power Analysis

    Yuichi KOMANO  Hideo SHIMIZU  Shinichi KAWAMURA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E93-A No:9
      Page(s):
    1632-1638

    Correlation power analysis (CPA) is a well-known attack against cryptographic modules with which an attacker evaluates the correlation between the power consumption and the sensitive data candidates calculated from a guessed sub-key and known data such as plaintexts and ciphertexts. This paper enhances CPA to propose a new general power analysis, built-in determined sub-key CPA (BS-CPA), which finds a new sub-key by using the previously determined sub-keys recursively to compute the sensitive data candidates and to increase the signal-to-noise ratio in its analysis. BS-CPA also reuses the power traces in the repetitions of finding sub-keys to decrease the total number of the required traces for determining the all sub-keys. BS-CPA is powerful and effective when the multiple sensitive data blocks such as sbox outputs are processed simultaneously as in the hardware implementation. We apply BS-CPA to the power traces provided at the DPA contest and succeed in finding a DES key using fewer traces than the original CPA does.

  • MV-OPES: Multivalued-Order Preserving Encryption Scheme: A Novel Scheme for Encrypting Integer Value to Many Different Values

    Hasan KADHEM  Toshiyuki AMAGASA  Hiroyuki KITAGAWA  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E93-D No:9
      Page(s):
    2520-2533

    Encryption can provide strong security for sensitive data against inside and outside attacks. This is especially true in the "Database as Service" model, where confidentiality and privacy are important issues for the client. In fact, existing encryption approaches are vulnerable to a statistical attack because each value is encrypted to another fixed value. This paper presents a novel database encryption scheme called MV-OPES (Multivalued--Order Preserving Encryption Scheme), which allows privacy-preserving queries over encrypted databases with an improved security level. Our idea is to encrypt a value to different multiple values to prevent statistical attacks. At the same time, MV-OPES preserves the order of the integer values to allow comparison operations to be directly applied on encrypted data. Using calculated distance (range), we propose a novel method that allows a join query between relations based on inequality over encrypted values. We also present techniques to offload query execution load to a database server as much as possible, thereby making a better use of server resources in a database outsourcing environment. Our scheme can easily be integrated with current database systems as it is designed to work with existing indexing structures. It is robust against statistical attack and the estimation of true values. MV-OPES experiments show that security for sensitive data can be achieved with reasonable overhead, establishing the practicability of the scheme.

  • Strongly Secure Privacy Amplification Cannot Be Obtained by Encoder of Slepian-Wolf Code

    Shun WATANABE  Ryutaroh MATSUMOTO  Tomohiko UYEMATSU  

     
    PAPER-Information Theory

      Vol:
    E93-A No:9
      Page(s):
    1650-1659

    Privacy amplification is a technique to distill a secret key from a random variable by a function so that the distilled key and eavesdropper's random variable are statistically independent. There are three kinds of security criteria for the key distilled by privacy amplification: the normalized divergence criterion, which is also known as the weak security criterion, the variational distance criterion, and the divergence criterion, which is also known as the strong security criterion. As a technique to distill a secret key, it is known that the encoder of a Slepian-Wolf (the source coding with full side-information at the decoder) code can be used as a function for privacy amplification if we employ the weak security criterion. In this paper, we show that the encoder of a Slepian-Wolf code cannot be used as a function for privacy amplification if we employ the criteria other than the weak one.

  • Characteristics of Break Arcs Driven by Transverse Magnetic Field in a DC High-Voltage Resistive Circuit

    Tomohiro ATSUMI  Junya SEKIKAWA  Takayoshi KUBONO  

     
    PAPER

      Vol:
    E93-C No:9
      Page(s):
    1393-1398

    Break arcs are generated between pure silver electrical contacts in a DC high-voltage resistive circuit. The break arc is driven by the external magnetic field of a permanent magnet from horizontal direction of contacts. Electrical contacts are separated at constant opening speed at 75 mm/s. The maximum supply voltage is 300 V. The maximum circuit current when electrical contacts are closed is 20 A. The maximum output power of the supply is limited to 6.0 kW. The gap between the contacts and the magnet is defined as x. The gap is varied from 2.5 mm to 10.0 mm to change the magnetic flux density that affects the break arc. The break arc is observed with a high-speed camera. The effect of the magnetic field on the arc duration was examined. As a result, break arcs are successfully extinguished by the transverse magnetic field when the gap x is 2.5 mm. Then the length of the break arc just before lengthening of the break arc L and the Lorentz force that affects the break arc F are examined. The length L was almost constant for each gap x and independent of the circuit current I and the Lorentz force F. The break arc is driven by the magnetic field when the arc length reached a certain length that was determined by the strength of the magnetic flux density.

  • Novel Optical Fiber Cable with Small Cable Diameter Employing Rollable 20-Fiber Ribbons

    Kazuo HOGARI  Yusuke YAMADA  Kunihiro TOGE  

     
    LETTER-Optical Fiber for Communications

      Vol:
    E93-B No:9
      Page(s):
    2433-2435

    This letter proposes novel optical fiber cables with extremely small cable diameter that employs rollable 20-fiber ribbons, which will improve fiber ribbon and cable productivity compared with optical fiber cable employing rollable 4-fiber ribbons. We fabricated the cables and investigated its feasibility in terms of high-count compactness, cable productivity, fiber strain induced by cable bending, optical loss characteristics and capacity for mass splicing. As a result, we confirmed the excellence of these cables and their fiber splicing workability.

  • Performance of Coded CS-CDMA/CP with M-ZCZ Code over a Fast Fading Channel

    Li YUE  Chenggao HAN  Nalin S. WEERASINGHE  Takeshi HASHIMOTO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:9
      Page(s):
    2381-2388

    This paper studies the performance of a coded convolutional spreading CDMA system with cyclic prefix (CS-CDMA/CP) combined with the zero correlation zone code generated from the M-sequence (M-ZCZ code) for downlink transmission over a multipath fast fading channel. In particular, we propose a new pilot-aided channel estimation scheme based on the shift property of the M-ZCZ code and show the robustness of the scheme against fast fading through comparison with the W-CDMA system empolying time-multiplexed pilot signals.

  • Intra-Cell Partial Spectrum Reuse Scheme for Cellular OFDM-Relay Networks

    Tong WU  Ying WANG  Yushan PEI  Gen LI  Ping ZHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:9
      Page(s):
    2462-2464

    This letter proposes an intra-cell partial spectrum reuse (PSR) scheme for cellular OFDM-relay networks. The proposed method aims to increase the system throughput, while the SINR of the cell edge users can be also promoted by utilizing the PSR scheme. The novel pre-allocation factor γ not only indicates the flexibility of PSR, but also decreases the complexity of the reuse mechanism. Through simulations, the proposed scheme is shown to offer superior performances in terms of system throughput and SINR of last 5% users.

7941-7960hit(20498hit)