The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

1821-1840hit(20498hit)

  • Android Malware Detection Scheme Based on Level of SSL Server Certificate

    Hiroya KATO  Shuichiro HARUTA  Iwao SASASE  

     
    PAPER-Dependable Computing

      Pubricized:
    2019/10/30
      Vol:
    E103-D No:2
      Page(s):
    379-389

    Detecting Android malwares is imperative. As a promising Android malware detection scheme, we focus on the scheme leveraging the differences of traffic patterns between benign apps and malwares. Those differences can be captured even if the packet is encrypted. However, since such features are just statistic based ones, they cannot identify whether each traffic is malicious. Thus, it is necessary to design the scheme which is applicable to encrypted traffic data and supports identification of malicious traffic. In this paper, we propose an Android malware detection scheme based on level of SSL server certificate. Attackers tend to use an untrusted certificate to encrypt malicious payloads in many cases because passing rigorous examination is required to get a trusted certificate. Thus, we utilize SSL server certificate based features for detection since their certificates tend to be untrusted. Furthermore, in order to obtain the more exact features, we introduce required permission based weight values because malwares inevitably require permissions regarding malicious actions. By computer simulation with real dataset, we show our scheme achieves an accuracy of 92.7%. True positive rate and false positive rate are 5.6% higher and 3.2% lower than the previous scheme, respectively. Our scheme can cope with encrypted malicious payloads and 89 malwares which are not detected by the previous scheme.

  • On Performance of Deep Learning for Harmonic Spur Cancellation in OFDM Systems

    Ziming HE  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E103-A No:2
      Page(s):
    576-579

    In this letter, the performance of a state-of-the-art deep learning (DL) algorithm in [5] is analyzed and evaluated for orthogonal frequency-division multiplexing (OFDM) receivers, in the presence of harmonic spur interference. Moreover, a novel spur cancellation receiver structure and algorithm are proposed to enhance the traditional OFDM receivers, and serve as a performance benchmark for the DL algorithm. It is found that the DL algorithm outperforms the traditional algorithm and is much more robust to spur carrier frequency offset.

  • Joint Energy-Efficiency and Throughput Optimization with Admission Control and Resource Allocation in Cognitive Radio Networks

    Jain-Shing LIU  Chun-Hung LIN  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2019/07/26
      Vol:
    E103-B No:2
      Page(s):
    139-147

    In this work, we address a joint energy efficiency (EE) and throughput optimization problem in interweave cognitive radio networks (CRNs) subject to scheduling, power, and stability constraints, which could be solved through traffic admission control, channel allocation, and power allocation. Specifically, the joint objective is to concurrently optimize the system EE and the throughput of secondary user (SU), while satisfying the minimum throughput requirement of primary user (PU), the throughput constraint of SU, and the scheduling and power control constraints that must be considered. To achieve these goals, our algorithm independently and simultaneously makes control decisions on admission and transmission to maximize a joint utility of EE and throughput under time-varying conditions of channel and traffic without a priori knowledge. Specially, the proposed scheduling algorithm has polynomial time efficiency, and the power control algorithms as well as the admission control algorithm involved are simply threshold-based and thus very computationally efficient. Finally, numerical analyses show that our proposals achieve both system stability and optimal utility.

  • Temporal Domain Difference Based Secondary Background Modeling Algorithm

    Guowei TENG  Hao LI  Zhenglong YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E103-A No:2
      Page(s):
    571-575

    This paper proposes a temporal domain difference based secondary background modeling algorithm for surveillance video coding. The proposed algorithm has three key technical contributions as following. Firstly, the LDBCBR (Long Distance Block Composed Background Reference) algorithm is proposed, which exploits IBBS (interval of background blocks searching) to weaken the temporal correlation of the foreground. Secondly, both BCBR (Block Composed Background Reference) and LDBCBR are exploited at the same time to generate the temporary background reference frame. The secondary modeling algorithm utilizes the temporary background blocks generated by BCBR and LDBCBR to get the final background frame. Thirdly, monitor the background reference frame after it is generated is also important. We would update the background blocks immediately when it has a big change, shorten the modeling period of the areas where foreground moves frequently and check the stable background regularly. The proposed algorithm is implemented in the platform of IEEE1857 and the experimental results demonstrate that it has significant improvement in coding efficiency. In surveillance test sequences recommended by the China AVS (Advanced Audio Video Standard) working group, our method achieve BD-Rate gain by 6.81% and 27.30% comparing with BCBR and the baseline profile.

  • Synthesis of a Complex Prototype Ladder Filter Excluding Inductors with Finite Transmission Zeros Suitable for Fully Differential Gm-C Realization Open Access

    Tatsuya FUJII  Kohsei ARAKI  Kazuhiro SHOUNO  

     
    LETTER-Analog Signal Processing

      Vol:
    E103-A No:2
      Page(s):
    538-541

    In this letter, an active complex filter with finite transmission zeros is proposed. In order to obtain a complex prototype ladder filter including no inductors, a new circuit transformation is proposed. This circuit is classified into the RiCR filter. It is shown that it includes no negative capacitors when it is obtained through a frequency transformation. The validity of the proposed method is confirmed through computer simulation.

  • An Energy-Efficient Task Scheduling for Near Real-Time Systems on Heterogeneous Multicore Processors

    Takashi NAKADA  Hiroyuki YANAGIHASHI  Kunimaro IMAI  Hiroshi UEKI  Takashi TSUCHIYA  Masanori HAYASHIKOSHI  Hiroshi NAKAMURA  

     
    PAPER-Software System

      Pubricized:
    2019/11/01
      Vol:
    E103-D No:2
      Page(s):
    329-338

    Near real-time periodic tasks, which are popular in multimedia streaming applications, have deadline periods that are longer than the input intervals thanks to buffering. For such applications, the conventional frame-based schedulings cannot realize the optimal scheduling due to their shortsighted deadline assumptions. To realize globally energy-efficient executions of these applications, we propose a novel task scheduling algorithm, which takes advantage of the long deadline period. We confirm our approach can take advantage of the longer deadline period and reduce the average power consumption by up to 18%.

  • Cross-Corpus Speech Emotion Recognition Based on Deep Domain-Adaptive Convolutional Neural Network

    Jiateng LIU  Wenming ZHENG  Yuan ZONG  Cheng LU  Chuangao TANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2019/11/07
      Vol:
    E103-D No:2
      Page(s):
    459-463

    In this letter, we propose a novel deep domain-adaptive convolutional neural network (DDACNN) model to handle the challenging cross-corpus speech emotion recognition (SER) problem. The framework of the DDACNN model consists of two components: a feature extraction model based on a deep convolutional neural network (DCNN) and a domain-adaptive (DA) layer added in the DCNN utilizing the maximum mean discrepancy (MMD) criterion. We use labeled spectrograms from source speech corpus combined with unlabeled spectrograms from target speech corpus as the input of two classic DCNNs to extract the emotional features of speech, and train the model with a special mixed loss combined with a cross-entrophy loss and an MMD loss. Compared to other classic cross-corpus SER methods, the major advantage of the DDACNN model is that it can extract robust speech features which are time-frequency related by spectrograms and narrow the discrepancies between feature distribution of source corpus and target corpus to get better cross-corpus performance. Through several cross-corpus SER experiments, our DDACNN achieved the state-of-the-art performance on three public emotion speech corpora and is proved to handle the cross-corpus SER problem efficiently.

  • Unlicensed Band Allocation for Heterogeneous Networks

    Po-Heng CHOU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/07/26
      Vol:
    E103-B No:2
      Page(s):
    103-117

    Based on the License Assisted Access (LAA) small cell architecture, the LAA coexisting with Wi-Fi heterogeneous networks provide LTE mobile users with high bandwidth efficiency as the unlicensed channels are shared among LAA and Wi-Fi. However, the LAA and Wi-Fi will affect each other when both systems are using the same unlicensed channel in the heterogeneous networks. In such a network, unlicensed band allocation for LAA and Wi-Fi is an important issue that may affect the quality of service (QoS) of both systems significantly. In this paper, we propose an analytical model and conduct simulation experiments to study two allocations for the unlicensed band: unlicensed full allocation (UFA), unlicensed time-division allocation (UTA), and the corresponding buffering mechanism for the LAA data packets. We evaluate the performance for these unlicensed band allocations schemes in terms of the acceptance rate of both LAA and Wi-Fi packet data in LAA buffer queue. Our study provides guidelines for designing channel occupation phase and the buffer size of LAA small cell.

  • Sign Reversal Channel Switching Method in Space-Time Block Code for OFDM Systems

    Hyeok Koo JUNG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E103-A No:2
      Page(s):
    567-570

    This paper proposes a simple source data exchange method for channel switching in space-time block code. If one transmits source data on another antenna, then the receiver should change combining method in order to adapt it. No one except knowing the channel switching sequence can decode the received data correctly. In case of exchanging data for channel switching, four orthogonal frequency division multiplexing symbols are exchanged according to a format of space-time block code. In this paper, I proposes two simple sign exchanges without exchanging four orthogonal-frequency division multiplexing symbols which occurs a different combining and channel switching method in the receiver.

  • Software Process Capability Self-Assessment Support System Based on Task and Work Product Characteristics: A Case Study of ISO/IEC 29110 Standard

    Apinporn METHAWACHANANONT  Marut BURANARACH  Pakaimart AMSURIYA  Sompol CHAIMONGKHON  Kamthorn KRAIRAKSA  Thepchai SUPNITHI  

     
    PAPER-Software Engineering

      Pubricized:
    2019/10/17
      Vol:
    E103-D No:2
      Page(s):
    339-347

    A key driver of software business growth in developing countries is the survival of software small and medium-sized enterprises (SMEs). Quality of products is a critical factor that can indicate the future of the business by building customer confidence. Software development agencies need to be aware of meeting international standards in software development process. In practice, consultants and assessors are usually employed as the primary solution, which can impact the budget in case of small businesses. Self-assessment tools for software development process can potentially reduce time and cost of formal assessment for software SMEs. However, the existing support methods and tools are largely insufficient in terms of process coverage and semi-automated evaluation. This paper proposes to apply a knowledge-based approach in development of a self-assessment and gap analysis support system for the ISO/IEC 29110 standard. The approach has an advantage that insights from domain experts and the standard are captured in the knowledge base in form of decision tables that can be flexibly managed. Our knowledge base is unique in that task lists and work products defined in the standard are broken down into task and work product characteristics, respectively. Their relation provides the links between Task List and Work Product which make users more understand and influence self-assessment. A prototype support system was developed to assess the level of software development capability of the agencies based on the ISO/IEC 29110 standard. A preliminary evaluation study showed that the system can improve performance of users who are inexperienced in applying ISO/IEC 29110 standard in terms of task coverage and user's time and effort compared to the traditional self-assessment method.

  • CLAP: Classification of Android PUAs by Similarity of DNS Queries

    Mitsuhiro HATADA  Tatsuya MORI  

     
    PAPER-Network Security

      Pubricized:
    2019/11/11
      Vol:
    E103-D No:2
      Page(s):
    265-275

    This work develops a system called CLAP that detects and classifies “potentially unwanted applications” (PUAs) such as adware or remote monitoring tools. Our approach leverages DNS queries made by apps. Using a large sample of Android apps from third-party marketplaces, we first reveal that DNS queries can provide useful information for detection and classification of PUAs. We then show that existing DNS blacklists are limited when performing these tasks. Finally, we demonstrate that the CLAP system performs with high accuracy.

  • A Family of New 16-QAM Golay Complementary Sequences without Higher PEP Upper Bounds

    Fanxin ZENG  Xiping HE  Guixin XUAN  Zhenyu ZHANG  Yanni PENG  Li YAN  

     
    LETTER-Information Theory

      Vol:
    E103-A No:2
      Page(s):
    547-552

    In an OFDM communication system using quadrature amplitude modulation (QAM) signals, peak envelope powers (PEPs) of the transmitted signals can be well controlled by using QAM Golay complementary sequence pairs (CSPs). In this letter, by making use of a new construction, a family of new 16-QAM Golay CSPs of length N=2m (integer m≥2) with binary inputs is presented, and all the resultant pairs have the PEP upper bound 2N. However, in the existing such pairs from other references their PEP upper bounds can arrive at 3.6N when the worst case happens. In this sense, novel pairs are good candidates for OFDM applications.

  • Shift Invariance Property of a Non-Negative Matrix Factorization

    Hideyuki IMAI  

     
    LETTER-General Fundamentals and Boundaries

      Vol:
    E103-A No:2
      Page(s):
    580-581

    We consider a property about a result of non-negative matrix factorization under a parallel moving of data points. The shape of a cloud of original data points and that of data points moving parallel to a vector are identical. Thus it is sometimes required that the coefficients to basis vectors of both data points are also identical from the viewpoint of classification. We show a necessary and sufficient condition for such an invariance property under a translation of the data points.

  • Architecture and Design of Coarse/Fine Hybrid Granular Routing Optical Networks Open Access

    Yusaku ITO  Yojiro MORI  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2019/07/26
      Vol:
    E103-B No:2
      Page(s):
    118-129

    A novel coarse and fine hybrid granular routing network architecture is proposed. Virtual direct links (VDLs) defined by the coarse granular routing to bridge distant node pairs, and routing via VDL mitigate the spectrum narrowing caused by optical filtering at wavelength-selective switches in ROADM (Reconfigurable Optical Add/Drop Multiplexing) nodes. The impairment mitigation yields denser channel accommodation in the frequency domain, which substantially increases fiber spectral efficiency. The proposed network simultaneously utilizes fine granular optical path level routing so that optical paths can be effectively accommodated in VDLs. The newly developed network design algorithm presented in this paper effectively implements routing and spectrum assignment to paths in addition to optimizing VDL establishment and path accommodation to VDLs. The effectiveness of the proposed architecture is demonstrated through both numerical and experimental evaluations; the number of fibers necessary in a network, and the spectrum bandwidth and hop count product are, respectively, reduced by up to 18% and increased by up to 111%.

  • Reconstruction of Scatterer Shape from Relative Intensity of Scattered Field by Using Linearized Boundary Element Method

    Jun-ichiro SUGISAKA  Takashi YASUI  Koichi HIRAYAMA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2019/08/22
      Vol:
    E103-C No:2
      Page(s):
    30-38

    A method to reconstruct the surface shape of a scatterer from the relative intensity of the scattered field is proposed. Reconstruction of the scatterer shape has been studied as an inverse problem. An approach that employs boundary-integral equations can determine the scatterer shape with low computation resources and high accuracy. In this method, the reconstruction process is performed so that the error between the measured far field of the sample and the computed far field of the estimated scatterer shape is minimized. The amplitude of the incident wave at the sample is required to compute the scattered field of the estimated shape. However, measurement of the incident wave at the sample (measurement without the sample) is inconvenient, particularly when the output power of the wave source is temporally unstable. In this study, we improve the reconstruction method with boundary-integral equations for practical use and expandability to various types of samples. First, we propose new boundary-integral equations that can reconstruct the sample shape from the relative intensity at a finite distance. The relative intensity is independent from the amplitude of the incident wave, and the reconstruction process can be performed without measuring the incident field. Second, the boundary integral equation for reconstruction is discretized with boundary elements. The boundary elements can flexibly discretize various shapes of samples, and this approach can be applied to various inverse scattering problems. In this paper, we present a few reconstruction processes in numerical simulations. Then, we discuss the reason for slow-convergence conditions and introduce a weighting coefficient to accelerate the convergence. The weighting coefficient depends on the distance between the sample and the observation points. Finally, we derive a formula to obtain an optimum weighting coefficient so that we can reconstruct the surface shape of a scatterer at various distances of the observation points.

  • A Survey on Mobile Malware Detection Techniques

    Vasileios KOULIARIDIS  Konstantia BARMPATSALOU  Georgios KAMBOURAKIS  Shuhong CHEN  

     
    INVITED PAPER

      Pubricized:
    2019/11/27
      Vol:
    E103-D No:2
      Page(s):
    204-211

    Modern mobile devices are equipped with a variety of tools and services, and handle increasing amounts of sensitive information. In the same trend, the number of vulnerabilities exploiting mobile devices are also augmented on a daily basis and, undoubtedly, popular mobile platforms, such as Android and iOS, represent an alluring target for malware writers. While researchers strive to find alternative detection approaches to fight against mobile malware, recent reports exhibit an alarming increase in mobile malware exploiting victims to create revenues, climbing towards a billion-dollar industry. Current approaches to mobile malware analysis and detection cannot always keep up with future malware sophistication [2],[4]. The aim of this work is to provide a structured and comprehensive overview of the latest research on mobile malware detection techniques and pinpoint their benefits and limitations.

  • Recurrent Neural Network Compression Based on Low-Rank Tensor Representation

    Andros TJANDRA  Sakriani SAKTI  Satoshi NAKAMURA  

     
    PAPER-Music Information Processing

      Pubricized:
    2019/10/17
      Vol:
    E103-D No:2
      Page(s):
    435-449

    Recurrent Neural Network (RNN) has achieved many state-of-the-art performances on various complex tasks related to the temporal and sequential data. But most of these RNNs require much computational power and a huge number of parameters for both training and inference stage. Several tensor decomposition methods are included such as CANDECOMP/PARAFAC (CP), Tucker decomposition and Tensor Train (TT) to re-parameterize the Gated Recurrent Unit (GRU) RNN. First, we evaluate all tensor-based RNNs performance on sequence modeling tasks with a various number of parameters. Based on our experiment results, TT-GRU achieved the best results in a various number of parameters compared to other decomposition methods. Later, we evaluate our proposed TT-GRU with speech recognition task. We compressed the bidirectional GRU layers inside DeepSpeech2 architecture. Based on our experiment result, our proposed TT-format GRU are able to preserve the performance while reducing the number of GRU parameters significantly compared to the uncompressed GRU.

  • Mathematical Analysis of Phase Resetting Control Mechanism during Rhythmic Movements

    Kazuki NAKADA  Keiji MIURA  

     
    INVITED PAPER

      Vol:
    E103-A No:2
      Page(s):
    398-406

    Possible functional roles of the phase resetting control during rhythmic movements have been attracting much attention in the field of robotics. The phase resetting control is a control mechanism in which the phase shift of periodic motion is induced depending on the timing of a given perturbation, leading to dynamical stability such as a rapid transition from an unstable state to a stable state in rhythmic movements. A phase response curve (PRC) is used to quantitatively evaluate the phase shift in the phase resetting control. It has been demonstrated that an optimal PRC for bipedal walking becomes bimodal. The PRCs acquired by reinforcement learning in simulated biped walking are qualitatively consistent with measured results obtained from experiments. In this study, we considered how such characteristics are obtained from a mathematical point of view. First, we assumed a symmetric Bonhoeffer-Van der Pol oscillator and phase excitable element known as an active rotator as a model of the central pattern generator for controlling rhythmic movements. Second, we constructed feedback control systems by combining them with manipulators. Next, we numerically computed the PRCs of such systems and compared the resulting PRCs. Furthermore, we approximately calculated analytical solutions of the PRCs. Based on the results, we systematically investigated the parameter dependence of the analytical PRCs. Finally, we investigated the requirements for realizing an optimal PRC for the phase resetting control during rhythmic movements.

  • Resource and Network Management Framework for a Large-Scale Satellite Communications System Open Access

    Yuma ABE  Masaki OGURA  Hiroyuki TSUJI  Amane MIURA  Shuichi ADACHI  

     
    PAPER-Systems and Control

      Vol:
    E103-A No:2
      Page(s):
    492-501

    Satellite communications (SATCOM) systems play important roles in wireless communication systems. In the future, they will be required to accommodate rapidly increasing communication requests from various types of users. Therefore, we propose a framework for efficient resource management in large-scale SATCOM systems that integrate multiple satellites. Such systems contain hundreds of thousands of communication satellites, user terminals, and gateway stations; thus, our proposed framework enables simpler and more reliable communication between users and satellites. To manage and control this system efficiently, we formulate an optimization problem that designs the network structure and allocates communication resources for a large-scale SATCOM system. In this mixed integer programming problem, we allow the cost function to be a combination of various factors so that SATCOM operators can design the network according to their individual management strategies. These factors include the total allocated bandwidth to users, the number of satellites and gateway stations to be used, and the number of total satellite handovers. Our numerical simulations show that the proposed management strategy outperforms a conventional strategy in which a user can connect to only one specific satellite determined in advance. Furthermore, we determine the effect of the number of satellites in the system on overall system performance.

  • Which Replacement Is Better at Working Cycles or Number of Failures Open Access

    Satoshi MIZUTANI  Xufeng ZHAO  Toshio NAKAGAWA  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E103-A No:2
      Page(s):
    523-532

    When a unit repeats some works over again and undergoes minimal repairs at failures, it is more practical to replace it preventively at the end of working cycles or at its failure times. In this case, it would be an interesting problem to know which is better to replace the unit at a number of working cycles or at random failures from the point of cost. For this purpose, we give models of the expected cost rates for the following replacement policies: (1) The unit is replaced at a working cycle N and at a failure number K, respectively; (2) Replacement first and last policies with working cycle N and failure number K, respectively; (3) Replacement overtime policies with working cycle N and failure number K, respectively. Optimizations and comparisons of the policies for N and K are made analytically and numerically.

1821-1840hit(20498hit)