The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20554hit)

2021-2040hit(20554hit)

  • Trust, Perceived Useful, Attitude and Continuance Intention to Use E-Government Service: An Empirical Study in Taiwan

    Hau-Dong TSUI  

     
    PAPER-Office Information Systems, e-Business Modeling

      Pubricized:
    2019/09/24
      Vol:
    E102-D No:12
      Page(s):
    2524-2534

    According to the official TDOAS 2009~2017 survey, the penetration rate of social media in Taiwan has reached a record 96.8%, while the Internet access rate is as high as 99.7%. However, people using government online services access to relevant information has continued to decline over the years, from 50.8% in 2009 to 35.4% in 2017. At the same time, the proportion of e-transaction users has also dropped simultaneously from 30.3% to 27.7%. In particular, only 1.1% of them are interested in government online forums, while the remaining 97.2% are more willing to engage in social media as a source of personal reference. The study aims to explore why are users not interested in accessing e-government services? Are they affected by the popularity of social networking applications? What are the key factors for users to continue to use e-government service? The research framework was adapted from expectation confirmation theory and model (ECT/ECM), technology acceptance model (TAM) with trust theories, in validating attitude measures for a better understanding of continuance intention of using e-government service. In terms of measurement, the assessment used the structural equation modeling method (SEM) to explore the views and preferences of 400 college students on e-government service. The study results identified that perceived usefulness not only plays a full mediating role, it is expected to be the most important ex-post factor influencing user's intention to continue using e-government service. It also clarifies that the intent to continue to use e-government services is not related to use any alternative means such as social media application.

  • A Fast Fabric Defect Detection Framework for Multi-Layer Convolutional Neural Network Based on Histogram Back-Projection

    Guodong SUN  Zhen ZHOU  Yuan GAO  Yun XU  Liang XU  Song LIN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/08/26
      Vol:
    E102-D No:12
      Page(s):
    2504-2514

    In this paper we design a fast fabric defect detection framework (Fast-DDF) based on gray histogram back-projection, which adopts end to end multi-convoluted network model to realize defect classification. First, the back-projection image is established through the gray histogram on fabric image, and the closing operation and adaptive threshold segmentation method are performed to screen the impurity information and extract the defect regions. Then, the defect images segmented by the Fast-DDF are marked and normalized into the multi-layer convolutional neural network for training. Finally, in order to solve the problem of difficult adjustment of network model parameters and long training time, some strategies such as batch normalization of samples and network fine tuning are proposed. The experimental results on the TILDA database show that our method can deal with various defect types of textile fabrics. The average detection accuracy with a higher rate of 96.12% in the database of five different defects, and the single image detection speed only needs 0.72s.

  • Dither NN: Hardware/Algorithm Co-Design for Accurate Quantized Neural Networks

    Kota ANDO  Kodai UEYOSHI  Yuka OBA  Kazutoshi HIROSE  Ryota UEMATSU  Takumi KUDO  Masayuki IKEBE  Tetsuya ASAI  Shinya TAKAMAEDA-YAMAZAKI  Masato MOTOMURA  

     
    PAPER-Computer System

      Pubricized:
    2019/07/22
      Vol:
    E102-D No:12
      Page(s):
    2341-2353

    Deep neural network (NN) has been widely accepted for enabling various AI applications, however, the limitation of computational and memory resources is a major problem on mobile devices. Quantized NN with a reduced bit precision is an effective solution, which relaxes the resource requirements, but the accuracy degradation due to its numerical approximation is another problem. We propose a novel quantized NN model employing the “dithering” technique to improve the accuracy with the minimal additional hardware requirement at the view point of the hardware-algorithm co-designing. Dithering distributes the quantization error occurring at each pixel (neuron) spatially so that the total information loss of the plane would be minimized. The experiment we conducted using the software-based accuracy evaluation and FPGA-based hardware resource estimation proved the effectiveness and efficiency of the concept of an NN model with dithering.

  • Tweet Stance Detection Using Multi-Kernel Convolution and Attentive LSTM Variants

    Umme Aymun SIDDIQUA  Abu Nowshed CHY  Masaki AONO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/09/25
      Vol:
    E102-D No:12
      Page(s):
    2493-2503

    Stance detection in twitter aims at mining user stances expressed in a tweet towards a single or multiple target entities. Detecting and analyzing user stances from massive opinion-oriented twitter posts provide enormous opportunities to journalists, governments, companies, and other organizations. Most of the prior studies have explored the traditional deep learning models, e.g., long short-term memory (LSTM) and gated recurrent unit (GRU) for detecting stance in tweets. However, compared to these traditional approaches, recently proposed densely connected bidirectional LSTM and nested LSTMs architectures effectively address the vanishing-gradient and overfitting problems as well as dealing with long-term dependencies. In this paper, we propose a neural network model that adopts the strengths of these two LSTM variants to learn better long-term dependencies, where each module coupled with an attention mechanism that amplifies the contribution of important elements in the final representation. We also employ a multi-kernel convolution on top of them to extract the higher-level tweet representations. Results of extensive experiments on single and multi-target benchmark stance detection datasets show that our proposed method achieves substantial improvement over the current state-of-the-art deep learning based methods.

  • Personalized Trip Planning Considering User Preferences and Environmental Variables with Uncertainty

    Mingu KIM  Seungwoo HONG  Il Hong SUH  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/07/24
      Vol:
    E102-D No:11
      Page(s):
    2195-2204

    Personalized trip planning is a challenging problem given that places of interest should be selected according to user preferences and sequentially arranged while satisfying various constraints. In this study, we aimed to model various uncertain aspects that should be considered during trip planning and efficiently generate personalized plans that maximize user satisfaction based on preferences and constraints. Specifically, we propose a probabilistic itinerary evaluation model based on a hybrid temporal Bayesian network that determines suitable itineraries considering preferences, constraints, and uncertain environmental variables. The model retrieves the sum of time-weighted user satisfaction, and ant colony optimization generates the trip plan that maximizes the objective function. First, the optimization algorithm generates candidate itineraries and evaluates them using the proposed model. Then, we improve candidate itineraries based on the evaluation results of previous itineraries. To validate the proposed trip planning approach, we conducted an extensive user study by asking participants to choose their preferred trip plans from options created by a human planner and our approach. The results show that our approach provides human-like trip plans, as participants selected our generated plans in 57% of the pairs. We also evaluated the efficiency of the employed ant colony optimization algorithm for trip planning by performance comparisons with other optimization methods.

  • Cauchy Aperture and Perfect Reconstruction Filters for Extending Depth-of-Field from Focal Stack Open Access

    Akira KUBOTA  Kazuya KODAMA  Asami ITO  

     
    PAPER

      Pubricized:
    2019/08/16
      Vol:
    E102-D No:11
      Page(s):
    2093-2100

    A pupil function of aperture in image capturing systems is theoretically derived such that one can perfectly reconstruct all-in-focus image through linear filtering of the focal stack. The perfect reconstruction filters are also designed based on the derived pupil function. The designed filters are space-invariant; hence the presented method does not require region segmentation. Simulation results using synthetic scenes shows effectiveness of the derived pupil function and the filters.

  • Optimal Price-Based Power Allocation Algorithm with Quality of Service Constraints in Non-Orthogonal Multiple Access Networks

    Zheng-qiang WANG  Kun-hao HUANG  Xiao-yu WAN  Zi-fu FAN  

     
    LETTER-Information Network

      Pubricized:
    2019/07/29
      Vol:
    E102-D No:11
      Page(s):
    2257-2260

    In this letter, we investigate the price-based power allocation for non-orthogonal multiple access (NOMA) networks, where the base station (BS) can admit the users to transmit by pricing their power. Stackelberg game is utilized to model the pricing and power purchasing strategies between the BS and the users. Based on backward induction, the pricing problem of the BS is recast into the non-convex power allocation problem, which is equivalent to the rate allocation problem by variable replacement. Based on the equivalence problem, an optimal price-based power allocation algorithm is proposed to maximize the revenue of the BS. Simulation results show that the proposed algorithm is superior to the existing pricing algorithm in items of the revenue of BS and the number of admitted users.

  • Parameter Estimation of Fractional Bandlimited LFM Signals Based on Orthogonal Matching Pursuit Open Access

    Xiaomin LI  Huali WANG  Zhangkai LUO  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1448-1456

    Parameter estimation theorems for LFM signals have been developed due to the advantages of fractional Fourier transform (FrFT). The traditional estimation methods in the fractional Fourier domain (FrFD) are almost based on two-dimensional search which have the contradiction between estimation performance and complexity. In order to solve this problem, we introduce the orthogonal matching pursuit (OMP) into the FrFD, propose a modified optimization method to estimate initial frequency and final frequency of fractional bandlimited LFM signals. In this algorithm, the differentiation fractional spectrum which is used to form observation matrix in OMP is derived from the spectrum analytical formulations of the LFM signal, and then, based on that the LFM signal has approximate rectangular spectrum in the FrFD and the correlation between the LFM signal and observation matrix yields a maximal value at the edge of the spectrum (see Sect.3.3 for details), the edge spectrum information can be extracted by OMP. Finally, the estimations of initial frequency and final frequency are obtained through multiplying the edge information by the sampling frequency resolution. The proposed method avoids reconstruction and the traditional peak-searching procedure, and the iterations are needed only twice. Thus, the computational complexity is much lower than that of the existing methods. Meanwhile, Since the vectors at the initial frequency and final frequency points both have larger modulus, so that the estimations are closer to the actual values, better normalized root mean squared error (NRMSE) performance can be achieved. Both theoretical analysis and simulation results demonstrate that the proposed algorithm bears a relatively low complexity and its estimation precision is higher than search-based and reconstruction-based algorithms.

  • Thresholdless Electro-Optical Property in Quasi Homogeneous and Homeotropic Liquid Crystal Cells Using Weak Anchoring Surfaces Open Access

    Rumiko YAMAGUCHI  

     
    BRIEF PAPER

      Vol:
    E102-C No:11
      Page(s):
    810-812

    Liquid crystal director distributions between strong and weak polar anchoring surfaces in hybrid aligned cells are numerically analyzed. When the anchoring is a critical one, homogeneously or homeotropicly liquid crystal alignment can be obtained. Such cells have no threshold voltage and a driving voltage can be reduced less than 0.5 volt.

  • Mechanical Stability and Self-Recovery Property of Liquid Crystal Gel Films with Hydrogen-Bonding Interaction

    Yosei SHIBATA  Ryosuke SAITO  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Vol:
    E102-C No:11
      Page(s):
    813-817

    In this study, we examined the mechanical durability and self-recovery characterization of liquid crystal gel films with lysine-based gelator. The results indicated that the structural destruction in liquid crystal gel films is attributed to dissociation among network structure. The cracked LC gel films can be recovered by formation of sol-sate films.

  • An Effective Track Width with a 2D Modulation Code in Two-Dimensional Magnetic Recording (TDMR) Systems Open Access

    Kotchakorn PITUSO  Chanon WARISARN  Damrongsak TONGSOMPORN  

     
    PAPER-Storage Technology

      Pubricized:
    2019/08/05
      Vol:
    E102-C No:11
      Page(s):
    839-844

    When the track density of two-dimensional magnetic recording (TDMR) systems is increased, intertrack interference (ITI) inevitably grows, resulting in the extreme degradation of an overall system performance. In this work, we present coding, writing, and reading techniques which allow TDMR systems with multi-readers to overcome severe ITI. A rate-5/6 two-dimensional (2D) modulation code is adopted to protect middle-track data from ITI based on cross-track data dependence. Since the rate-5/6 2D modulation code greatly improves the reliability of the middle-track, there is a bit-error rate gap between middle-track and sidetracks. Therefore, we propose the different track width writing technique to optimize the reliability of all three data tracks. In addition, we also evaluate the TDMR system performance using an user areal density capability (UADC) as a main key parameter. Here, an areal density capability (ADC) can be measured by finding the bit-error rate of the system with sweeping track and linear densities. The UADC is then obtained by removing redundancy from the ADC. Simulation results show that a system with our proposed techniques gains the UADC of about 4.66% over the conventional TDMR systems.

  • Underwater Signal Analysis in the Modulation Spectrogram with Time-Frequency Reassignment Technique

    Hyunjin CHO  Wan Jin KIM  Wooyoung HONG  

     
    LETTER-Engineering Acoustics

      Vol:
    E102-A No:11
      Page(s):
    1542-1544

    Modulation spectrogram is effective for analyzing underwater signals which consist of tonal and modulated components. This method can analyze the acoustic and modulation frequency at the same time, but has the trade-off issue of time-frequency localization. This letter introduces a reassignment method for overcoming the localization issue in conventional spectrograms, and then presents an alignment scheme for implementing modulation spectrogram. Relevant experiments show improvement in acoustic frequency estimation perspective and an increment in analyzable modulation frequency range.

  • A New Formula to Compute the NLMS Algorithm at a Computational Complexity of O(2N)

    Kiyoshi NISHIYAMA  Masahiro SUNOHARA  Nobuhiko HIRUMA  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1545-1549

    The least mean squares (LMS) algorithm has been widely used for adaptive filtering because of easily implementing at a computational complexity of O(2N) where N is the number of taps. The drawback of the LMS algorithm is that its performance is sensitive to the scaling of the input. The normalized LMS (NLMS) algorithm solves this problem on the LMS algorithm by normalizing with the sliding-window power of the input; however, this normalization increases the computational cost to O(3N) per iteration. In this work, we derive a new formula to strictly perform the NLMS algorithm at a computational complexity of O(2N), that is referred to as the C-NLMS algorithm. The derivation of the C-NLMS algorithm uses the H∞ framework presented previously by one of the authors for creating a unified view of adaptive filtering algorithms. The validity of the C-NLMS algorithm is verified using simulations.

  • Effective Direction-of-Arrival Estimation Algorithm by Exploiting Fourier Transform for Sparse Array

    Zhenyu WEI  Wei WANG  Ben WANG  Ping LIU  Linshu GONG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2159-2166

    Sparse arrays can usually achieve larger array apertures than uniform linear arrays (ULA) with the same number of physical antennas. However, the conventional direction-of-arrival (DOA) estimation algorithms for sparse arrays usually require the spatial smoothing operation to recover the matrix rank which inevitably involves heavy computational complexity and leads to a reduction in the degrees-of-freedom (DOFs). In this paper, a low-complex DOA estimation algorithm by exploiting the discrete Fourier transform (DFT) is proposed. Firstly, the spatial spectrum of the virtual array constructed from the sparse array is established by exploiting the DFT operation. The initial DOA estimation can obtain directly by searching the peaks in the DFT spectrum. However, since the number of array antennas is finite, there exists spectrum power leakage which will cause the performance degradation. To further improve the angle resolution, an iterative process is developed to suppress the spectrum power leakage. Thus, the proposed algorithm does not require the spatial smoothing operation and the computational complexity is reduced effectively. In addition, due to the extention of DOF with the application of the sparse arrays, the proposed algorithm can resolve the underdetermined DOA estimation problems. The superiority of the proposed algorithm is demonstrated by simulation results.

  • Subjective Super-Resolution Model on Coarse High-Speed LED Display in Combination with Pseudo Fixation Eye Movements Open Access

    Toyotaro TOKIMOTO  Shintaro TOKIMOTO  Kengo FUJII  Shogo MORITA  Hirotsugu YAMAMOTO  

     
    INVITED PAPER

      Vol:
    E102-C No:11
      Page(s):
    780-788

    We propose a method to realize a subjective super-resolution on a high-speed LED display, which dynamically shows a set of four neighboring pixels on every LED pixel. We have experimentally confirmed the subjective super-resolution effect. This paper proposes a subjective super-resolution hypothesis in human visual system and reports simulation results with pseudo fixation eye movements.

  • Amplification Characteristics of a Phase-Sensitive Amplifier of a Chirped Optical Pulse

    Kyo INOUE  

     
    PAPER-Lasers, Quantum Electronics

      Pubricized:
    2019/06/07
      Vol:
    E102-C No:11
      Page(s):
    818-824

    Phase-sensitive amplification (PSA) has unique properties, such as the quantum-limited noise figure of 0 dB and the phase clamping effect. This study investigates PSA characteristics when a chirped pulse is incident. The signal gain, the output waveform, and the noise figure for an optical pulse having been chirped through chromatic dispersion or self-phase modulation before amplification are analyzed. The results indicate that the amplification properties for a chirped pulse are different from those of a non-chirped pulse, such that the signal gain is small, the waveform is distorted, and the noise figure is degraded.

  • Discriminative Convolutional Neural Network for Image Quality Assessment with Fixed Convolution Filters

    Motohiro TAKAGI  Akito SAKURAI  Masafumi HAGIWARA  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/08/09
      Vol:
    E102-D No:11
      Page(s):
    2265-2266

    Current image quality assessment (IQA) methods require the original images for evaluation. However, recently, IQA methods that use machine learning have been proposed. These methods learn the relationship between the distorted image and the image quality automatically. In this paper, we propose an IQA method based on deep learning that does not require a reference image. We show that a convolutional neural network with distortion prediction and fixed filters improves the IQA accuracy.

  • An SBL-Based Coherent Source Localization Method Using Virtual Array Output Open Access

    Zeyun ZHANG  Xiaohuan WU  Chunguo LI  Wei-Ping ZHU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2151-2158

    Direction of arrival (DOA) estimation as a fundamental issue in array signal processing has been extensively studied for many applications in military and civilian fields. Many DOA estimation algorithms have been developed for different application scenarios such as low signal-to-noise ratio (SNR), limited snapshots, etc. However, there are still some practical problems that make DOA estimation very difficult. One of them is the correlation between sources. In this paper, we develop a sparsity-based method to estimate the DOA of coherent signals with sparse linear array (SLA). We adopt the off-grid signal model and solve the DOA estimation problem in the sparse Bayesian learning (SBL) framework. By considering the SLA as a ‘missing sensor’ ULA, our proposed method treats the output of the SLA as a partial output of the corresponding virtual uniform linear array (ULA) to make full use of the expanded aperture character of the SLA. Then we employ the expectation-maximization (EM) method to update the hyper-parameters and the output of the virtual ULA in an iterative manner. Numerical results demonstrate that the proposed method has a better performance in correlated signal scenarios than the reference methods in comparison, confirming the advantage of exploiting the extended aperture feature of the SLA.

  • A Highly Efficient Wideband Two-Dimensional Direction Estimation Method with L-Shaped Microphone Array

    Bandhit SUKSIRI  Masahiro FUKUMOTO  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1457-1472

    This paper presents an efficient wideband two-dimensional direction-of-arrival (DOA) estimation for an L-shaped microphone array. We propose a way to construct a wideband sample cross-correlation matrix without any process of DOA preliminary estimation, such as beamforming technique, by exploiting sample cross-correlation matrices of two different frequencies for all frequency bins. Subsequently, wideband DOAs can be estimated by using this wideband matrix along with a scheme of estimating DOA in a narrowband subspace method. Therefore, a contribution of our study is providing an alternative framework for recent narrowband subspace methods to estimating the DOA of wideband sources directly. It means that this framework enables cutting-edge techniques in the existing narrowband subspace methods to implement the wideband direction estimation for reducing the computational complexity and facilitating the estimation algorithm. Theoretical analysis and effectiveness of the proposed method are substantiated through numerical simulations and experiments, which are performed in reverberating environments. The results show that performance of the proposed method performs better than others over a range of signal-to-noise ratio with just a few microphones. All these advantages make the proposed method a powerful tool for navigation systems based on acoustic signal processing.

  • Antenna Allocation of Full Duplex Receiver for Security Improvement of the MIMOME Wiretap Channel with Self-Interference Cancellation

    Tianwen GUO  Ping DENG  Qiang YU  Baoyun WANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1560-1565

    In this letter, we investigate a design of efficient antenna allocation at the full duplex receiver (FDR) in a multi-input multi-output multi-eavesdropper (MIMOME) wiretap channel for physical layer security improvement. Specifically, we propose the allocation which are feasible for the practical scenario with self-interference (SI) taken into account, because the jamming signals from FDR not only confuse the eavesdropper but also inevitably cause SI at the FDR. Due to the nolinear and coupling of the antenna allocation optimization problem, we transform the original problem into an integer programming problem. Then, we derive the optimal solution and the corresponding beamforming matrices in closed-form by means of combining spatial alignment and null-space projection method. Furthermore, we present the feasibility condition and full-protection condition, which offer insight into principles that enable more efficient and effective use of FDR in the wiretap channel for security improvement. From the simulation results, we validate the theoretical analysis and demonstrate the outstanding performance of the proposed antennas allocation at FDR.

2021-2040hit(20554hit)