The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] BP(150hit)

121-140hit(150hit)

  • Numerical Analysis of Beam-Expanders Integrated with Laser Diodes

    Makoto TAKAHASHI  Tsukuru OHTOSHI  Masahiro AOKI  Hiroshi SATO  Shinji TSUJI  Kazuhisa UOMI  Ken NAONO  

     
    PAPER-Semiconductor Lasers

      Vol:
    E83-C No:6
      Page(s):
    845-854

    Waveguide characteristics of beam-expanders integrated with laser diodes were numerically analyzed by the beam propagation method (BPM) or the finite-difference time-domain (FD-TD) method. It was demonstrated that the vertically and horizontally hybrid tapered structure or an optimized refractive index in the cladding layer improve the trade-off relationship between fiber coupling efficiency and lasing characteristics. It was also demonstrated that exponentially tapering stripe width can reduce device length without sacrificing device properties.

  • Performance Analysis of Layer3 Switch: Case of Flow-Driven Connection Setup

    Kenji KAWAHARA  Shougo NAKAZAWA  Tetsuya TAKINE  Yuji OIE  

     
    PAPER-IP/ATM

      Vol:
    E83-B No:2
      Page(s):
    130-139

    The layer3 switch enables us to fast transmit IP datagrams using the cut-through technique. The current layer3 router would become bottleneck in terms of delay performance as the amount of traffic injected into high speed networks gets relatively large. Thus, the layer3 switch should be an important element constructing the next generation Internet backbone. In this paper, we analyze the cut-through rate, the datagram waiting time and the mis-ordered rate of a layer3 switch in case of flow-driven connection setup. In the analysis, by using 3-state Markov modulated Bernoulli process (MMBP), we model the arrival process of IP flow and IP datagram from each source. Furthermore, we investigate impacts of the arrival rate and the average datagram length on the performance.

  • Performance of Millimeter-Wave BPSK System with Single Cochannel Interference

    Chien-Ching CHIU  Chi-Ping WANG  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    2049-2054

    This paper use a site-specific model to characterize the performance of millimeter wave BPSK system with single cochannel interference. Shooting and bouncing ray/image techniques are applied to compute the impulse responses for concrete-wall-partition rooms and plasterboard-wall-partition rooms. By using the impulse responses of these multipath channels, the BERs (Bit Error Rates) for high-speed BPSK (binary phase shift keying) systems with phase and timing recovery circuits are calculated. In addition, the carrier-to-interference ratio is also computed. Numerical results show that the interference for the plasterboard-wall-partition rooms is more severe than that for the concrete-wall-partition rooms.

  • All-Optical Code Division Multiplexing Switching Network Based on Self-Routing Principle

    Isamu SAEKI  Shouhei NISHI  Koso MURAKAMI  

     
    PAPER-Photonic Networking

      Vol:
    E82-B No:2
      Page(s):
    239-245

    The tera-bit order capacity of ultrahigh-speed and wide-band networks will become necessary to provide highly advanced multimedia services. In conventional networks, electronic circuits limit the speed capability of the networks. Consequently, all-optical networks are essential to realize ultrahigh-speed and wide-band communications. In this paper, we propose the configuration of an all-optical code division multiplexing (CDM) switching network based on self-routing principles and the structure of a nonlinear all-optical switching device as one of the key components for the network. We show that the required performances of the optical devices used in the CDM switching fabric are lower than those used in the TDM and illustrate the basic transmission characteristics of the switching device utilizing FD-BPM. To evaluate the multiplexing performance, we demonstrate the maximum number of channels under an error-free condition and the BER characteristics when the Gold sequence is applied as one of the CDM code sets, and show that the network of the sub-tera-bit order capacity is realizable by adopting TDM, WDM and CDM technologies. We also illustrate the packet assembly method suitable for self-routing transmissions and one of network architectures where the proposed switching fabric can be exploited.

  • All-Optical Code Division Multiplexing Switching Network Based on Self-Routing Principle

    Isamu SAEKI  Shouhei NISHI  Koso MURAKAMI  

     
    PAPER-Photonic Networking

      Vol:
    E82-C No:2
      Page(s):
    187-193

    The tera-bit order capacity of ultrahigh-speed and wide-band networks will become necessary to provide highly advanced multimedia services. In conventional networks, electronic circuits limit the speed capability of the networks. Consequently, all-optical networks are essential to realize ultrahigh-speed and wide-band communications. In this paper, we propose the configuration of an all-optical code division multiplexing (CDM) switching network based on self-routing principles and the structure of a nonlinear all-optical switching device as one of the key components for the network. We show that the required performances of the optical devices used in the CDM switching fabric are lower than those used in the TDM and illustrate the basic transmission characteristics of the switching device utilizing FD-BPM. To evaluate the multiplexing performance, we demonstrate the maximum number of channels under an error-free condition and the BER characteristics when the Gold sequence is applied as one of the CDM code sets, and show that the network of the sub-tera-bit order capacity is realizable by adopting TDM, WDM and CDM technologies. We also illustrate the packet assembly method suitable for self-routing transmissions and one of network architectures where the proposed switching fabric can be exploited.

  • Self-Switching in Crossing Waveguides with Three Channels Consisting of Nonlinear Material

    Yono Hadi PRAMONO  Masahiro GESHIRO  Toshiaki KITAMURA  Shinnosuke SAWA  

     
    PAPER-Opto-Electronics

      Vol:
    E82-C No:1
      Page(s):
    111-118

    We examine crossing waveguides with three channels consisting of nonlinear material by means of FD-BPM (Finite Difference Beam Propagation Method). Specifically, we investigate how the insertion of a multimode waveguide into the crossing section of both 13 and 23 structures influences the switching characteristics of output power. We then confirm that these structures can be favorably applied to a wide variety of all-optical devices for integrated optics such as intensity-dependent optical switches, optical power distributors and so on.

  • Performance Evaluation of DS/CDMA Communications Systems Modulated with π/2-Shift BPSK over Multipath Rayleigh Fading Channels

    M. M. Asadullah GALIB  Takaya YAMAZATO  Masaaki KATAYAMA  Akira OGAWA  

     
    PAPER

      Vol:
    E81-A No:11
      Page(s):
    2304-2310

    In mobile communications, power is a very important factor and nonlinear amplification of power amplifiers cannot be avoided due to their high power efficiency. This article presents the performance of π/2-shift BPSK modulation scheme used in DS/SS/CDMA wireless communications over multipath Rayleigh fading channel and compares the performance with the performance of conventional BPSK and offset QPSK CDMA systems. The performance parameters: Out-of-Band power, average Bit Error Rate (BER) and Spectral Efficiency have been evaluated. In order to obtain improved performance on fading channels, a RAKE receiver has been employed. Finally it is shown that π/2-shift BPSK outperforms conventional BPSK and offset QPSK in the presence of nonlinear amplification.

  • Comparative Evaluation between Parallel Combinatory CDMA and Direct Sequence CDMA for High Speed Radio Communication

    Osamu KATO  Masaki HAYASHI  Mitsuru UESUGI  Koichi HOMMA  

     
    PAPER

      Vol:
    E81-A No:7
      Page(s):
    1406-1414

    Comparative performance evaluation between parallel combinatory CDMA (PC-CDMA) and Direct Sequence CDMA (DS-CDMA) has been conducted for high speed radio communication up to 2 Mbps under a multipath Rayleigh fading environment. For both DS-CDMA and PC-CDMA, user information rate per code of 128 kbps, convolutional code with 1/2 coding rate, the same bit interleaving and QPSK data modulation are applied to get transmission symbol rate of 128 ksps. The chip rate of 4. 096 Mcps is used to investigate the possibility of 2 Mbps transmission using only 5 MHz bandwidth. So the spreading factor of the spreading code is 32 for DS-CDMA. In PC-CDMA, 128 ksps data stream is divided into four 32 ksps data streams and according to the every four bits pattern, corresponding spreading code of spreading factor of 128 and its polarity are selected out of eight candidate spreading codes. In soft decision Viterbi decoding applied to PC-CDMA, branch metric is calculated for every bit by weighting the output levels of the PC-CDMA correlators for eight candidate spreading codes. By computer simulation under vehicular environment model with six multipaths, it has been shown that PC-CDMA can offer more capacity approximately by double than DS-CDMA for both downlink and uplink under the condition such as for vehicular for BER of 10-3, and 2 Mbps transmission per cell for downlink is possible not only in isolated cell condition but also in omni cell condition by PC-CDMA.

  • A Study on Vertically Installed Planar (VIP) Combline Bandpass Filters via 3D-FDTD Method

    Chuandong ZHAO  Ikuo AWAI  

     
    PAPER-Components

      Vol:
    E81-C No:4
      Page(s):
    602-607

    A two stage Combline Bandpass Filter (C-BPF) of the Vertically Installed Planar (VIP) structure has been investigated, which is essentially composed of a strongly coupled microstrip lines terminated with a planar fin and through-hole combined with the tapping feed approach. The principle and performance of this filter is studied approximately by an equivalent circuit model and also by the normalized 3D-FDTD method more exactly. The time domain iteration in the FDTD analysis is performed in an expanded time dimension resulting in a reduced CPU time. Some of the obtained numerical results are compared well with the measured ones. A modified VIP combline BPF has the advantages of simple structure, easy tuning, low cost, versatile bandwidth control and good skirt characteristics brought about by two attenuation poles.

  • Threshold-Based Intra-Video Synchronization for Multimedia Communications

    Shih T. LIANG  Po L. TIEN  Maria C. YUANG  

     
    PAPER-Communication Networks and Services

      Vol:
    E81-B No:4
      Page(s):
    706-714

    Multimedia communications often require intramedia synchronization for video data to prevent potential playout discontinuity while still retaining satisfactory playout throughput. In this paper, we propose a novel intra-video synchronization mechanism, called the Video Smoother, particularly suitable for low-end multimedia applications, such as video conferencing. Generally, the Video Smoother dynamically adopts various playout rates according to the number of frames in the playout buffer in an attempt to compensate for the delay jitter introduced from networks. In essence, if the number of frames in the buffer exceeds a given threshold (TH), the Smoother employs a maximum playout rate. Otherwise, the Smoother employs linearly or exponentially reduced rates to eliminate playout pauses resulting from the emptiness of the playout buffer. To determine optimal THs achieving a minimum of playout discontinuity and a maximum of playout throughput under various bursty traffic, we propose an analytic model assuming incoming traffic following an Interrupted Bernoulli arrival Process (IBP). As a result, optimal THs can be analytically determined resulting in superior playout quality under various arrivals and loads of networks. Finally, we display simulation results which demonstrate that, compared to the playout without intra-video synchronization (instant playout), the Video Smoother achieves superior smooth playout and compatible throughput.

  • π/2-shift BPSK A Modulation Scheme Robust to Nonlinear Amplification for CDMA Mobile Communications

    Kumud KASHYAP  Tadahiro WADA  Masaaki KATAYAMA  Takaya YAMAZATO  Akira OGAWA  

     
    LETTER

      Vol:
    E80-A No:9
      Page(s):
    1634-1639

    For mobile communication systems with code division multiple access (CDMA), a new modulation scheme, π/2-shift BPSK, is proposed. The performance has been evaluated in terms of relative out-of-band power, bit-error rate (BER), and spectral efficiency. As the result, it is shown that the proposed scheme has an advantage over conventional BPSK, conventional QPSK, and π/4-shift QPSK under nonlinear amplification.

  • Individual Sojourn Delay Analysis of an ATM Switch Receiving Heterogeneous Markov-Modulated Bernoulli Processes under FIFO and Priority Service Disciplines

    Wei-Chung MIAO  Jin-Fu CHANG  

     
    PAPER-Switching and Communication Processing

      Vol:
    E80-B No:5
      Page(s):
    712-725

    In this paper, we analyze the individual sojourn delay experienced by cells from each virtual channel (VC) passing through an ATM switch port. Traffic from each VC is described by a four-parameter Markov-Modulated Bernoulli process (MMBP). A switch port is assumed to receive traffic from a group of heterogeneous MMBPs and the queueing behavior is modelled by a H-MMBPs/D/1/ queue. Two service disciplines are considered: FIFO and priority. Closed-form formulas of overall as well as individual sojourn delays for both service disciplines are obtained. Although approximation is inevitable in our analysis, the accuracy is good when compare with computer simulations. As a result we provide an efficient tool to estimate cell delay for each individual VC before it is established. Our result can be applied to network resource decision or control problems such as call admission control and routing.

  • High-Speed Data Transmission Using Millimeter-Wave Fiber-Optic Links

    Hiroshi KAWAMURA  Nobuaki IMAI  Eiichi OGAWA  Hideyuki INOMATA  

     
    PAPER

      Vol:
    E79-B No:12
      Page(s):
    1784-1791

    This paper describes a millimeter-wave (MMW) transmission system over fiber-optic links applicable for high-speed mobile communications. The system design is presented considering both the MMW radio link and fiber-optic link. To prove the capability of the MMW fiber-optic link, an experimental system has been constructed. The results of in-door transmission experiments showed that this system could be capable of transmitting 118 Mbps digital signals with a BER of less than 10-6. The developed system is easily applicable to a wireless access system which can connect subscribers with a broadband optical fiber network.

  • Two Dimensional Largest Common Subpatterns between Pictures

    Eiichi TANAKA  Sumio MASUDA  

     
    LETTER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:9
      Page(s):
    1358-1361

    Several two-dimensional largest common subpatterns (LCP) between pictures are defined and their computing methods are proposed. The time and space complexities of the computing methods are O(IJMN) to obtain the size of LCPs between a picture with IJ pixels and a picture with MN pixels. These LCPs can be used as similarity measures between pictures and can be applied to texture recognition and classification.

  • Low Power Dissipation GaAs DCFL 2.5 Gbps 16-bit Multiplexer/Demultiplexer LSIs

    Norio HIGASHISAKA  Masaaki SHIMADA  Akira OHTA  Kenji HOSOGI  Kazuo KUBO  Noriyuki TANINO  

     
    PAPER

      Vol:
    E78-C No:9
      Page(s):
    1195-1202

    In order to establish design and measurement technologies for an LSI that features high speed operation and low power dissipation, GaAs 2.5 Gbps 16 bit MUX/DEMUX LSIs have been successfully developed. DCFL is employed as a basic gate in order to reduce the power dissipation. For the purpose of achieving stable operation against the transistor parameter deviation, a timing design called clock tracking is employed. Moreover, to ensure accurate performance measurement, a new measurement system is introduced. The measurement system consists of an error rate detector (ERD), a pulse pattern generator (PPG) and a high speed tester (HST). The performances tested by the measurement system show the power consumptions of MUX and DEMUX LSIs are 1.35 W and 0.95 W. Input phase margin of DEMUX LSI is 290 degrees at 2.5 Gbps operation. The technologies obtained through development of these MUX/DEMUX LSIs are applicable to other high speed and low power LSIs.

  • Reduction of Critical Power in All-Optical Switching with Series-Tapered Nonlinear Directional Coupler

    Guosheng PU  Tetsuya MIZUMOTO  Kenichiro ITO  Yoshiki HIGASHIDE  Yoshiyuki NAITO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E78-C No:9
      Page(s):
    1315-1318

    A novel series-tapered nonlinear directional coupler is proposed to improve all-optical switching characteristics. Its switching characteristics are analyzed by using a beam propagation method based on the Galerkin's finite element technique. It is presented that the critical power of the series-tapered nonlinear directional coupler is smaller than conventional uniform symmetric and tapered nonlinear directional couplers.

  • A 0.1 µm Au/WSiN Gate GaAs MESFET with New BP-LDD Structure and Its Applications

    Masami TOKUMITSU  Kazumi NISHIMURA  Makoto HIRANO  Kimiyoshi YAMASAKI  

     
    PAPER

      Vol:
    E78-C No:9
      Page(s):
    1189-1194

    A 0.1-µm gate-length GaAs MESFET technology is reported. A 48.3-GHz dynamic-frequency divider, and an amplifier with 20-dB gain and 17.5-GHz bandwidth are successfully fabricated by integrating over-100-GHz-cut-off frequency MESFETs using a new lightly-doped drain structure with a buried p-layer (BP-LDD) device structure.

  • A realization of an arbitrary BPC Permutation in Hypercube Connected Computer Networks

    Hiroshi MASUYARA  Yuichiro MORITA  Etsuko MASUYAMA  

     
    PAPER-Computer Networks

      Vol:
    E78-D No:4
      Page(s):
    428-435

    A multiple instruction stream-multiple data stream (MIMD) computer is a parallel computer consisting of a large number of identical processing elements. The essential feature that distinguishes one MIMD computer family from another is the interconnection network. In this paper, we are concerned with a representative type of interconnection networks: the hypercube connected network. A family of regular graphs is presented as a possible candidate for the implementation of a distributed system and for fault-tolerant architectures. The symmetry of graphs makes it possible to determine message routing by using a simple distributed algorithm. A candidate having the same property is the hypercube connected network. Arbitrary data permutations are generally accomplished by sorting. For certain classes of permutations, however, this is, for many frequently used permutations in parallel processing such as bit reversal, bit shuffle, bit complement, matrix transpose, butterfly permutations used in FFT algorithms, and segment shuffles, there exist algorithms that are more efficient than the best sorting algorithm. One such class is the bit permute complement (BPC) class of permutations. In this paper, we, first, develop an algorithm to realize an arbitrary BPC permutation in hypercube connected networks. The developed algorithm in hypercube connected networks requires only 1 token memory register in each node. We next evaluate the ability to realize BPC permutations in these networks of an arbitrary size by estimating the number of required routing steps.

  • Numerical Analysis of an Optical X Coupler with a Nonlinear Dielectric Region

    Hirohisa YOKOTA  Koichi KIMURA  Sadao KURAZONO  

     
    PAPER

      Vol:
    E78-C No:1
      Page(s):
    61-66

    For an application to the optical signal processing devices, we propose the optical X coupler which consists of two bending waveguides and a nonlinear dielectric region. To analyze this structure accurately we utilized the iterative finite difference beam propagation method (iterative FD-BPM). In this paper the formulation of the iterative FD-BPM for one wave and two waves cases are presented, respectively. We investigate following two cases. First, we consider the case that the light is launched into one of the input ports. We calculate the evolutions of the field amplitude and the transmission characteristics for the input power. Second, we consider the case that the signal light with the constant power is launched into one of the input ports and that the control light with the wavelength different from that of the signal light is launched into another input port. We calculate the evolutions of the field amplitude and the transmission characteristics of the signal light for the power of control light. As a result of the analysis, we show that all-optical switching operation is possible in the proposed structure.

  • 4-Move Perfect ZKIP for Some Promise Problems

    Kaoru KUROSAWA  Wakaha OGATA  Shigeo TSUJII  

     
    PAPER

      Vol:
    E78-A No:1
      Page(s):
    34-41

    In this paper, we consider ZKIPs for promise problems. A promise problem is a pair of predicates (Q,R). A Turning machine T solves the promise problem (Q,R) if, for every x satisfying Q(x), machine T halts and it answers "yes" iff R(x). When ¬Q (x), we do not care what T does. First, we define "promised BPP" which is a promise problem version of BPP. Then, we prove that a promise problem (Q,R) has a 3-move interactive proof system which is black-box simulation zero knowledge if and only if (Q,R) ∈ promised BPP. Next, we show a "4-move" perfect ZKIPs (black-box simulation) for a promise problem of Quadratic Residuosity and that of Blum Numbers under no cryptographic assumption.

121-140hit(150hit)