The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] BP(150hit)

81-100hit(150hit)

  • The Dual-Band Bandpass Filters Using Doubly Parallel-Coupled SIRs with Multiple Zeros for WLAN Applications

    Min-Hua HO  Hao-Hung HO  Chen-Mao RAO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:6
      Page(s):
    949-955

    Two dual-band bandpass filters (BPFs) based on the doubly parallel-coupled stepped impedance resonators (SIRs) structures have been proposed in this paper. The coupled-SIRs with/without open-stub-loads are introduced in the filter design. The dual-band filters exhibiting multiple zeros design operate at 2.45/5.2-GHz for the WLAN applications. Two three-staged filters composed of four SIRs have been proposed with the tapped-line adapted in the I/O sections. A five-staged filter is constructed based on the same design principle to achieve a better band-rejection. The proposed filters have the advantages of a much wider bandwidth in both the passbands without sacrificing the passband's insertion loss and passband flatness. The design procedure for a conventional parallel-coupled microstrip lines model is still suitable to design the proposed filters. The proposed filters have achieved almost twice the bandwidth of a conventional parallel-coupled lines configuration under the same design parameters. The experiments have been conducted to verify filter performance. Measured results are in good agreement with the full-wave simulation results.

  • A Dual Mode BPF with Improved Spurious Response Using DGS Cells Embedded on the Ground Plane of CPW

    Min-Hang WENG  Chang-Sin YE  Cheng-Yuan HUNG  Chun-Yueh HUANG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:2
      Page(s):
    224-227

    A novel dual mode bandpass filter (BPF) with improved spurious response is presented in this letter. To obtain low insertion loss, the coupling structure using the dual mode resonator and the feeding scheme using coplanar-waveguide (CPW) are constructed on the two sides of a dielectric substrate. A defected ground structure (DGS) is designed on the ground plane of the CPW to achieve the goal of spurious suppression of the filter. The filter has been investigated numerically and experimentally. Measured results show a good agreement with the simulated analysis.

  • Effect of Group Delay in RF BPF on Impulse Radio Systems

    Seong-Sik MYOUNG  Bong-Su KWON  Young-Hwan KIM  Jong-Gwan YOOK  

     
    PAPER-Devices/Circuits for Communications

      Vol:
    E90-B No:12
      Page(s):
    3514-3522

    This paper presents an analysis of the effects of RF filter characteristics on the system performance of an impulse radio. The impulse radio system transmits modulated pulses having very short time duration. Information can be extracted in the receiver side based on the cross-correlation between received and reference pulses. Accordingly, the pulse distortion due to in-band group delay variation can cause serious degradation in system performance. In general, RF band pass filters inevitably cause non-uniform group delays to the signal passing through the filter that are proportional to its skirt characteristic due to its resonance phenomenon. In this work, a small signal scattering parameter, S21, which is a frequency domain parameter, and its Fourier transform are utilized to characterize the output pulse waveform under the condition that the input and output ports are matched. The output pulse waveform of the filter is predicted based on the convolution integral between the input pulse and filter transfer function, and the analysis result is compared with previously reported experimental result. The resulting bit error rate performances in a bi-phase modulation and a pulse position modulation based impulse radio system are also calculated. Moreover, improvement of system performance by the pulse shaping method, a potential solution for pulse waveform distortion, is analyzed.

  • Design and Fabrication of 40 Gbps-NRZ SOA-MZI All-Optical Wavelength Converters with Submicron-Width Bulk InGaAsP Active Waveguides

    Yasunori MIYAZAKI  Kazuhisa TAKAGI  Keisuke MATSUMOTO  Toshiharu MIYAHARA  Tatsuo HATTA  Satoshi NISHIKAWA  Toshitaka AOYAGI  Kuniaki MOTOSHIMA  

     
    PAPER-Semiconductor Devices

      Vol:
    E90-C No:5
      Page(s):
    1118-1123

    The design aspects of the bulk InGaAsP semiconductor optical amplifier integrated Mach-Zehnder interferometer (SOA-MZI) optimized for 40 Gbps-NRZ all optical wavelength conversion are described. The dimensions of the SOA active waveguide have been optimized for fast gain recovery by maximizing the gain and adjusting the wavelength-converted NRZ waveforms. Submicron-width buried heterostructure (BH) SOA waveguides were fabricated successfully and showed little leakage current. The experimental wavelength-converted optical waveform agreed well to the numerical simulations, and mask-compliant 40 G-NRZ wavelength-converted waveform was obtained by the optimized SOA-MZI. 40 G-NRZ full C-band operation and polarization-insensitive operation of SOA-MZI were also achieved.

  • An Improved Decoding Algorithm for Finite-Geometry LDPC Codes

    Yueguang BIAN  Youzheng WANG  Jing WANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E90-B No:4
      Page(s):
    978-981

    In this letter, we propose a new modification to the belief propagation (BP) decoding algorithm for Finite-Geometry low-density parity-check (LDPC) codes. The modification is based on introducing feedback into the iterative process, which can break the oscillations of bit log-likelihood ratio (LLR) values. Simulations show that, with a given maximum iteration, the "feedback BP" (FBP) algorithm can achieve better performance than the conventional belief propagation algorithm.

  • MLP/BP-Based Soft Decision Feedback Equalization with Bit-Interleaved TCM for Wireless Applications

    Terng-Ren HSU  Chien-Ching LIN  Terng-Yin HSU  Chen-Yi LEE  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E90-A No:4
      Page(s):
    879-884

    For more efficient data transmissions, a new MLP/BP-based channel equalizer is proposed to compensate for multi-path fading in wireless applications. In this work, for better system performance, we apply the soft output and the soft feedback structure as well as the soft decision channel decoding. Moreover, to improve packet error rate (PER) and bit error rate (BER), we search for the optimal scaling factor of the transfer function in the output layer of the MLP/BP neural networks and add small random disturbances to the training data. As compared with the conventional MLP/BP-based DFEs and the soft output MLP/BP-based DFEs, the proposed MLP/BP-based soft DFEs under multi-path fading channels can improve over 3-0.6 dB at PER=10-1 and over 3.3-0.8 dB at BER=10-3.

  • A BPMN Extension for the Modeling of Security Requirements in Business Processes

    Alfonso RODRIGUEZ  Eduardo FERNANDEZ-MEDINA  Mario PIATTINI  

     
    PAPER-Software Engineering

      Vol:
    E90-D No:4
      Page(s):
    745-752

    Business Processes are considered a crucial issue by many enterprises because they are the key to maintain competitiveness. Moreover, business processes are important for software developers, since they can capture from them the necessary requirements for software design and creation. Besides, business process modeling is the center for conducting and improving how the business is operated. Security is important for business performance, but traditionally, it is considered after the business processes definition. Empirical studies show that, at the business process level, customers, end users, and business analysts are able to express their security needs. In this work, we will present a proposal aimed at integrating security requirements through business process modeling. We will summarize our Business Process Modeling Notation extension for modeling secure business process through Business Process Diagrams, and we will apply this approach to a typical health-care business process.

  • Color Texture Segmentation Using Color Transform and Feature Distributions

    Shiuh-Ku WENG  Chung-Ming KUO  Wei-Cung KANG  

     
    LETTER-Pattern Recognition

      Vol:
    E90-D No:4
      Page(s):
    787-790

    This letter presents a simple scheme to transform colors to some representative classes for color information reduction. Then, the weighted distributions of color index histogram (CIH) and local binary pattern (LBP) are applied to measure the similarity of adjacent texture regions during the segmentation process. In addition, for improving the segmentation accuracy, an efficient boundary checking algorithm is proposed. The proposed method not only saves execution time but also segments the distinct texture regions correctly.

  • LDPC Codes in Communications and Broadcasting Open Access

    Tomoaki OHTSUKI  

     
    INVITED SURVEY PAPER

      Vol:
    E90-B No:3
      Page(s):
    440-453

    Low-density parity-check (LDPC) codes are one of the most powerful error correcting codes and are attracting much attention these days. LDPC codes are promising for communications and broadcasting as well where the use of error correcting codes are essential. LDPC codes have been standardized in some communication standards, such as, IEEE802.16e, DVB-S2, IEEE802.3an (10BASE-T), and so on. The performance of LDPC codes largely depend on their code structure and decoding algorithm. In this paper, we present the basics of LDPC codes and their decoding algorithms. We also present some LDPC codes that have good performance and are receiving much attention particularly in communication systems. We also overview some standardized LDPC codes, the LDPC codes standardized in DVB-S2 and the IEEE802.16e standard LDPC codes. Moreover, we present some research on LDPC coded MIMO systems and HARQ using LDPC codes.

  • Numerical Analysis of Waveguide-Based Surface Plasmon Resonance Sensor with Adsorbed Layer Using Two- and Three-Dimensional Beam-Propagation Methods

    Jun SHIBAYAMA  Shota TAKAGI  Tomohide YAMAZAKI  Junji YAMAUCHI  Hisamatsu NAKANO  

     
    PAPER-Plasmonics and Nanophotonics

      Vol:
    E90-C No:1
      Page(s):
    95-101

    A waveguide-based surface plasmon resonance (SPR) sensor with an adsorbed layer is analyzed using the beam-propagation method. For two-dimensional (2-D) models, numerical results show that the change in thickness of the adsorbed layer placed on the metal leads to a significant shift of the maximum absorption wavelength. Through eigenmode analysis, the maximum absorption wavelength is found to be consistent with the cutoff wavelength of the second-order surface plasmon mode. The designed 2-D sensor shows an absorption wavelength shift from 0.595 to 0.603 µm, when the analyte refractive index is increased from 1.330 to 1.334. After a basic investigation using the 2-D models, we next study 3-D models. When the metal with the absorbed layer is wide enough to cover the core region, the 3-D results are similar to the 2-D results. However, as the metal width is reduced, the absorption wavelength shifts toward a shorter wavelength and the sensitivity to the refractive index change degrades gradually. The degradation of the sensitivity is considerable when the metal width is narrower than the core width. As a result, the metal width of the practical SPR sensor should be slightly wider than the core width so as to maintain the sensitivity corresponding to that obtained for the 2-D model.

  • Application-Coexistent Wire-Rate Network Monitor for 10 Gigabit-per-Second Network

    Kenji SHIMIZU  Tsuyoshi OGURA  Tetsuo KAWANO  Hiroyuki KIMIYAMA  Mitsuru MARUYAMA  Keiichi KOYANAGI  

     
    PAPER

      Vol:
    E89-D No:12
      Page(s):
    2875-2885

    To apply network monitoring functions to emerging high-quality video streaming services, we proposed an application-coexistent monitor (APCM). In APCM, a streaming server can works as an active monitor and a passive monitor. In addition, IP packets sent from the server carry monitoring information together with application's data such as video signals. To achieve APCM on a 10-Gbps network, we developed a network interface card for an application-coexistent wire-rate network monitor (AWING NIC). It provides (1) a function to append GPS-based accurate timestamps to every packet that streaming applications send and receive, which can be used for real-time monitoring of delays and inter-packet gap, and (2) functions to capture and generate 10-Gbps wire-rate traffic without depending on packets' size, achieved by our highly-efficient DMA-transfer mechanisms. Such monitoring capability are unprecedented in existing PC-based systems because of the limitation in PC system's architecture. As an evaluation of APCM in an actual network, we conducted an experiment to transmit a 6-Gbps high-quality video stream over an IP network with the system in which we installed the AWING NIC. The results revealed that the video stream became highly bursty by passing through the network, and the observed smallest inter-packet gap corresponds to the value of 10-Gbps wire-rate traffic, which supports the effectiveness of our development.

  • Cache-Based Network Processor Architecture: Evaluation with Real Network Traffic

    Michitaka OKUNO  Shinji NISHIMURA  Shin-ichi ISHIDA  Hiroaki NISHI  

     
    PAPER

      Vol:
    E89-C No:11
      Page(s):
    1620-1628

    A novel cache-based network processor (NP) architecture that can catch up with next generation 100-Gbps packet-processing throughput by exploiting a nature of network traffic is proposed, and the prototype is evaluated with real network traffic traces. This architecture consists of several small processing units (PUs) and a bit-stream manipulation hardware called a burst-stream path (BSP) that has a special cache mechanism called a process-learning cache (PLC) and a cache-miss handler (CMH). The PLC memorizes a packet-processing method with all table-lookup results, and applies it to subsequent packets that have the same information in their header. To avoid packet-processing blocking, the CMH handles cache-miss packets while registration processing is performed at the PLC. The combination of the PLC and CMH enables most packets to skip the execution at the PUs, which dissipate huge power in conventional NPs. We evaluated an FPGA-based prototype with real core network traffic traces of a WIDE backbone router. From the experimental results, we observed a special case where the packet of minimum size appeared in large quantities, and the cache-based NP was able to achieve 100% throughput with only the 10%-throughput PUs due to the existence of very high temporal locality of network traffic. From the whole results, the cache-based NP would be able to achieve 100-Gbps throughput by using 10- to 40-Gbps throughput PUs. The power consumption of the cache-based NP, which consists of 40-Gbps throughput PUs, is estimated to be only 44.7% that of a conventional NP.

  • High-Speed Power-Line Communication and Its Application to a Localization System

    Shinji TSUZUKI  

     
    INVITED PAPER

      Vol:
    E89-A No:11
      Page(s):
    3006-3012

    This paper overviews the high-speed power-line communication (PLC) technology, and the related standardization and regulatory activities are described. PLC modems of 200 Mbps class become a practical use stage in the West, and the standardization activity is active now. The discussion for deregulation is being continued in also Japan, and regulation values have been proposed. Another topic in this paper is a sensor network application of PLC, which is an indoor fine-grained localization system by acoustic Direct-Sequence Code Division Multiplexed (DS-CDM) signals. The obtained average accuracy of the localization in a 4 m2 plane was 1 cm if there was no obstacle. To realize the localization system, some novel ideas, such as PLC speakers, a synchronization method based on the zero-crossing timing of the mains frequency, and integrated wired/wireless PLC, are introduced.

  • Spurious Suppression of a Parallel Coupled Microstrip Bandpass Filter with Simple Ring EBG Cells on the Middle Layer

    Hung-Wei WU  Min-Hang WENG  Yan-Kuin SU  Ru-Yuan YANG  Cheng-Yuan HUNG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E89-C No:4
      Page(s):
    568-570

    This paper proposes a parallel coupled microstrip bandpass filter (BPF) with ring Electromagnetic Bandgap (EBG) cells on the middle layer for spurious suppression. The ring EBG cells of the middle layer add a good stopband-rejection mode to the second harmonics of the parallel coupled microstrip BPF with suppression of over -50 dB, without affecting the center frequency and insertion loss of the original designed BPF. The design of ring EBG cells is presented and verified by the experimented results.

  • 0.18-µm CMOS 10-Gb/s Current-Mode Serial Link Transmitters

    Fei YUAN  Jean JIANG  

     
    PAPER-Communications and Wireless Systems

      Vol:
    E88-D No:8
      Page(s):
    1863-1869

    This paper presents the design of new fully differential CMOS class A and class AB current-mode transmitters for multi-Gbps serial links. A high multiplexing speed is achieved by multiplexing at low-impedance nodes and inductive shunt peaking with active inductors. The fully complementary operation of the multiplexers and the fully differential configuration of the transmitters minimizes the effect of common-mode disturbances and that of EMI from channels to neighboring devices. Large output current swing is obtained by making use of differential current amplifiers and the differential rail-to-rail configuration. The constant current drawn from the supply voltage minimizes the noise injected into the substrate. The transmitters have been implemented in TSMC's 1.8 V 0.18 µm CMOS technology and analyzed using Spectre from Cadence Design Systems with BSIM3V device models. Simulation results confirm that the proposed transmitters are capable of transmitting data at 10 Gbps.

  • Out-of-Band Improvement by Microstrip Line BPFs with Multiple Attenuation Poles in Stopband Using Various Conditions of Coupling Length of Partially Coupled-Line Section

    Kouji WADA  Ramesh K. POKHAREL  Takanobu OHNO  Osamu HASHIMOTO  

     
    PAPER-Resonators & Filters

      Vol:
    E88-C No:7
      Page(s):
    1430-1439

    In a partially coupled-line bandpass filter (BPF), a combination of two microstrip line resonators which are partially coupled, are considered, where one resonator is half-wavelength (λ/2)-long, and another whose one end is grounded, is only quarter-wavelength (λ/4)-long. Therefore, the length of a coupled-line section can be varied based on the position of the grounding end, and five conditions of the movable coupling length have been simulated which will greatly influence the spurious responses of a BPF. This property is numerically investigated in this paper. The analysis shows that, based on the grounding position, this method is capable of realizing the improved out-of-band characteristics by locating the multiple attenuation poles in the stopband and improved spurious responses up to five times of the center frequency (5f0). A few empirical models of BPF are fabricated, and the numerical results are ensured by comparing with the experimental results.

  • Effect of Conductor Cladding on Dielectric Slab for Coupling with Side-Polished Fiber

    Kwang-Hee KWON  Euy-Don PARK  Jae-Won SONG  

     
    LETTER-Optoelectronics

      Vol:
    E88-C No:3
      Page(s):
    458-462

    The effect of planar waveguide with conductor cladding (PWGCC) on evanescent coupling with a side-polished fiber is investigated using the three-dimensional finite difference beam propagation method (3D FD-BPM). The coupling and propagation of light were found to depend on the relationship between the refractive index values of each structure and the configuration of the side-polished fiber used in the PWGCC.

  • Microwave-Circuit-Embedded Resin Printed Circuit Board for Short Range Wireless Interfaces

    Akira SAITOU  Kazuhiko HONJO  Kenichi SATO  Toyoko KOYAMA  Koichi WATANABE  

     
    PAPER

      Vol:
    E88-C No:1
      Page(s):
    83-88

    Microwave circuits embedded in a multi-layer resin PCB are demonstrated using low loss resin materials. Resin materials for microwave frequencies were compared with conventional FR-4 with respect to dielectric and conductor loss factors, which proved that losses could be reduced drastically with the low loss material and design optimizations. Baluns, switches and BPFs were designed and fabricated to estimate microwave performances. Measured and simulated insertion losses of the circuits for 2.5 GHz band, were 0.3 dB for a switch, 0.4 dB for a balun and 2.0 dB for a 3-stage Chebyshev BPF. An integration of a switch, a BPF and two baluns was successfully implemented in a multi-layer PCB. Insertion losses of the fabricated integrated circuit were less than 3 dB with 0.1 dB additional loss compared with a sum of individual circuit losses. With estimated results of temperature characteristics and reliability as well as low loss performances, microwave circuits in resin PCBs can be considered as a viable candidate for microwave equipments.

  • Analysis of Bandpass Filters with Shielded Inverted Microstrip Lines

    Ushio SANGAWA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E87-C No:10
      Page(s):
    1715-1723

    A bandpass filter (BPF) with shielded inverted microstrip lines (SIMSL), previously demonstrated by the author, has shown the nontrivial asymmetry of filter responses in spite of adopting a conventional filter synthesis procedure. This paper will reveal the mechanism of the asymmetry and propose prescriptions for recovering the defect, in addition to observing the wave propagation property of SIMSL. Firstly, the behavior of phase constants or effective dielectric constants for various modes propagating on single SIMSL are indicated in terms of the line configuration, and the dispersion characteristics of the quasi-TEM mode are interpreted from the point of mode coupling between the pure TEM mode and dielectric slab modes. Then it is shown that the asymmetry is dependent only on the transmission characteristics of SIMSL parallel-coupled lines involved in the filter circuits. Theoretical considerations reveal that the asymmetry is due to the fact that SIMSL has quite different phase constants for the even- and odd-mode. On the basis of these results, the optimized BPF is designed and it is experimentally demonstrated that the symmetry of its responses is notably recovered. Furthermore, this optimization is still quite efficient for achieving high attenuation properties at its harmonics.

  • Novel Superlinear First Order Algorithms

    Peter GECZY  Shiro USUI  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E87-A No:6
      Page(s):
    1620-1631

    Applying the formerly proposed classification framework for first order line search optimization techniques we introduce novel superlinear first order line search methods. Novelty of the methods lies in the line search subproblem. The presented line search subproblem features automatic step length and momentum adjustments at every iteration of the algorithms realizable in a single step calculation. This keeps the computational complexity of the algorithms linear and does not harm the stability and convergence of the methods. The algorithms have none or linear memory requirements and are shown to be convergent and capable of reaching the superlinear convergence rates. They were practically applied to artificial neural network training and compared to the relevant training methods within the same class. The simulation results show satisfactory performance of the introduced algorithms over the standard and previously proposed methods.

81-100hit(150hit)