The search functionality is under construction.

Keyword Search Result

[Keyword] CAM(220hit)

181-200hit(220hit)

  • A Row-Parallel Position Detector for High-Speed 3-D Camera Based on Light-Section Method

    Yusuke OIKE  Makoto IKEDA  Kunihiro ASADA  

     
    PAPER-Electronic Circuits

      Vol:
    E86-C No:11
      Page(s):
    2320-2328

    A high-speed 3-D camera has a future possibility of wide variety of application fields such as quick inspection of industrial components, observation of motion/destruction of a target object, and fast collision prevention. In this paper, a row-parallel position detector for a high-speed 3-D camera based on a light-section method is presented. In our row-parallel search method, the positions of activated pixels are quickly detected by a row-parallel search circuit in pixel and a row-parallel address acquisition of O(log N) cycles in N-pixel horizontal resolution. The architecture keeps high-speed position detection in high pixel resolution. We have designed and fabricated the prototype position sensor with a 12816 pixel array in 0.35 µm CMOS process. The measurement results show it achieves quick activated-position acquisition of 450 ns for "beyond-real-time" 3-D imaging and visual feedback. The high-speed position detection of the scanning sheet beam is demonstrated.

  • An Ultra-High-Sensitivity HDTV Camcorder

    Junichi YAMAZAKI  Masayuki MIYAZAKI  Tsuneo IHARA  Itaru MIZUNO  Kazuo YOSHIKAWA  Shigehiro KANAYAMA  Nobuo MATSUI  Takayoshi HIRUMA  Masaharu NISHIMURA  

     
    PAPER

      Vol:
    E86-C No:9
      Page(s):
    1810-1815

    An ultra-high-sensitivity HDTV color camcorder (camera with VTR) has been developed featuring image intensifiers with GaAsP photocathodes, which provide very high quantum efficiency. To achieve superior performance and a compact camera body, we combined three 1-inch image intensifiers with a 2/3-inch taking lens and three 2/3-inch CCDs by means of a new optical system capable of enlarging and reducing images. The camcorder provides excellent color reproducibility even under low light level conditions (0.2 lx) at an iris setting of f/2, with a signal-to-noise ratio of 55 dB at pedestal level. Its sensitivity is about 400 times greater than that of current HDTV CCD camcorders, making it particularly well suited for capturing images of faint objects in space, aurora, etc., filming the nocturnal activities of animals in their natural settings, and reporting breaking news at night.

  • Calibration Method by Image Registration with Synthetic Image of 3D Model

    Toru TAMAKI  Masanobu YAMAMOTO  

     
    LETTER-Image Processing, Image Pattern Recognition

      Vol:
    E86-D No:5
      Page(s):
    981-985

    We propose a method for camera calibration based on image registration. This method registers two images; one is a real image captured by a camera with a calibration object with known shape and texture, and the other is a synthetic image containing the object. The proposed method estimates the parameters of the rotation and translation of the object by using the depth information of the synthetic image. The Gauss-Newton method is used to minimize the residuals of intensities of the two images. The proposed method does not depend on initial values of the minimization, and is applicable to images with much noise. Experimental results using real images demonstrate the robustness against initial state and noise on the image.

  • Automatic LSI Package Lead Inspection System with CCD Camera for Backside Lead Specification

    Wataru TAMAMURA  Koji NAKAMAE  Hiromu FUJIOKA  

     
    PAPER-Integrated Electronics

      Vol:
    E86-C No:4
      Page(s):
    661-667

    An automatic LSI package lead inspection system for backside lead specification is proposed. The proposed system inspects not only lead backside contamination but also the mechanical lead specification such as lead pitch, lead offset and lead overhangs (variations in lead lengths). The total inspection time of a UQFP package with a lead count of 256 is less than the required time of 1 second. Our proposed method is superior to the threshold method used usually, especially for the defect between leads.

  • Real-Time View-Interpolation System for Super Multi-View 3D Display

    Tadahiko HAMAGUCHI  Toshiaki FUJII  Toshio HONDA  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E86-D No:1
      Page(s):
    109-116

    A 3D display using super high-density multi-view images should enable reproduction of natural stereoscopic views. In the super multi-view display system, viewpoints are sampled at an interval narrower than the diameter of the pupil of a person's eye. With the parallax produced by a single eye, this system can pull out the accommodation of an eye to an object image. We are now working on a real-time view-interpolation system for the super multi-view 3D display. A multi-view camera using convergence capturing to prevent resolution degradation captures multi-view images of an object. Most of the data processing is used for view interpolation and rectification. View interpolation is done using a high-speed image-processing board with digital-signal-processor (DSP) chips or single instruction stream and multiple data streams (SIMD) parallel processor chips. Adaptive filtering of the epipolar plane images (EPIs) is used for the view-interpolation algorithm. The multi-view images are adaptively interpolated using the most suitable filters for the EPIs. Rectification, a preprocess, converts the multi-view images in convergence capturing into the ones in parallel capturing. The use of rectified multi-view images improves the processing speed by limiting the interpolation processing in EPI.

  • A Study on Higher Order Differential Attack of Camellia

    Takeshi KAWABATA  Masaki TAKEDA  Toshinobu KANEKO  

     
    PAPER-Symmetric Ciphers and Hash Functions

      Vol:
    E86-A No:1
      Page(s):
    31-36

    The encryption algorithm Camellia is a 128 bit block cipher proposed by NTT and Mitsubishi, Japan. Since the algebraic degree of the outputs after 3 rounds is greater than 128, designers estimate that it is impossible to attack Camellia by higher order differential. In this paper, we show a new higher order differential attack which controls the value of differential using proper fixed value of plaintext. As the result, we found that 6-round F-function can be attacked using 8th order differentials. The attack requires 217 chosen plaintexts and 222 F-function operations. Our computer simulation took about 2 seconds for the attack. If we take 2-R elimination algorithm, 7-round F-function will be attacked using 8th order differentials. This attack requires 219 chosen plaintexts and 264 F-function operations, which is less than exhaustive search for 128 bit key.

  • Best Truncated and Impossible Differentials of Feistel Block Ciphers with S-D (Substitution and Diffusion) or D-S Round Functions

    Makoto SUGITA  Kazukuni KOBARA  Hideki IMAI  

     
    PAPER-Symmetric Ciphers and Hash Functions

      Vol:
    E86-A No:1
      Page(s):
    2-12

    This paper describes truncated and impossible differentials of Feistel block ciphers with round functions of 2-layer SPN (Substitution and Permutation Network) transformation modules such as the 128-bit block cipher Camellia, which was proposed by NTT and Mitsubishi Electric Corporation. Our work improves on the best known truncated and impossible differentials, and has found a nontrivial 9-round truncated differential that may lead to a possible attack against a reduced-round version of Camellia without input/output whitening, FL or FL-1 (Camellia-NFL), in the chosen plain text scenario. Previously, only 6-round differentials were known that may suggest a possible attack of Camellia-NFL reduced to 8-rounds. We also show a nontrivial 7-round impossible differential, whereas only a 5-round impossible differential was previously known. We also consider the truncated differential of a reduced-round version of Camellia (Camellia-DS) whose round functions are composed of D-S (Diffusion and Substitution) transformation modules and without input/output whitening, FL or FL-1 (Camellia-DS-NFL), and show a nontrivial 9-round truncated differential, which may lead to a possible attack in the chosen plain text scenario. This truncated differential is effective for general Feistel structures with round functions composed of S-D (Substitution and Diffusion) or D-S transformation.

  • Feasibility Study of Silicate Phosphor CaMgSi2O6:Eu2+ as Blue PDP Phosphors

    Takashi KUNIMOTO  Ryo YOSHIMATSU  Koutoku OHMI  Shosaku TANAKA  Hiroshi KOBAYASHI  

     
    PAPER-Plasma Displays

      Vol:
    E85-C No:11
      Page(s):
    1888-1894

    A blue-light-emitting Eu2+ doped CaMgSi2O6 phosphor with a long lifetime for a plasma display panel (PDP) was developed. The CaMgSi2O6:Eu2+(CMS:Eu2+) phosphors synthesized using SiO2-rich source materials show no luminance degradation during the baking process for binder burn-off, and the photoluminescence peak intensity of the Eu2+ emission band is higher than that of conventional blue phosphor BaMgAl10O17:Eu2+ (BAM) after the baking process. The test PDP using synthesized CMS:Eu2+ phosphor shows a comparable emission peak intensity to that of BAM, while the luminance of the CMS:Eu2+ panel is approximately 55% that of the BAM panel due to the narrower spectral bandwidth and shorter peak wavelength. The CMS:Eu2+ panel shows less luminance degradation than BAM under the aging test, and the CMS:Eu2+ panel retains 85% of its luminance after 300 hours driving. It is found that CMS:Eu2+ appears to be a promising blue phosphor material for PDP.

  • Constructing Virtual Cities with Real Activities

    Katsushi IKEUCHI  Masao SAKAUCHI  Masataka KAGESAWA  Hiroshi KAWASAKI  Takuji TAKAHASHI  Michihiro MURAO  Shintaro ONO  

     
    INVITED PAPER

      Vol:
    E85-D No:11
      Page(s):
    1734-1744

    A virtual city, a virtual reality system to display an urban scene, is one of the most promising tools for ITS applications, including car navigation aids, shopping guides, and city planning, to name a few. This paper overviews our effort to create virtual cities through a sequence of images obtained with vision/range sensors. Our virtual city consists not of only stationary buildings but also of running and parked vehicles, which reflect the current activities in the real city. The first part of this paper describes how to construct still building images from a sequence of images. Here, we focus on methods employing an omni image camera that acquires images containing rays of 360 degrees viewing directions. The second part describes a system to display vehicle movement in the virtual city based on the image sequence given with a monitoring TV camera at an intersection. It also describes a preliminary step toward displaying illegal parked vehicles from information collected by a probe car.

  • FLASH: Fast and Scalable Table-Lookup Engine Architecture for Telecommunications

    Tsunemasa HAYASHI  Toshiaki MIYAZAKI  

     
    PAPER-Network

      Vol:
    E85-D No:10
      Page(s):
    1636-1644

    This paper presents an architecture for a table-lookup (TLU) engine that allows the real-time operation of complicated TLU for telecommunications, such as the longest prefix match (LPM) and the long-bit match in packet classification. The engine consists of many CAM (Content Addressable Memory) chips, which are classified into several groups. When actual TLU is performed, the entries in each CAM group are searched simultaneously, and the best entry candidate in each group is selected by an intra-group arbiter. The final output, the entry desired, is decided by an inter group arbiter that selects one group. This hierarchical structure of arbitration is the key to the scalability of the engine. To accelerate the operation speed of the engine, we introduce a novel mechanism called "hit-flag look-ahead" that sends a hit-flag signal from each matched CAM chip to the inter group arbiter before each intra group arbiter calculates the best CAM output in the group. We show that a TLU engine based on the above architecture achieves significantly fast performance compared to engines based on conventional techniques, especially in the case of a large number of entries with long-bit matching. Furthermore, our architecture can realize an 33.3 Mlps (lookups per second) within a 128 bit 300,000-entry table at wire speed.

  • A High-Speed Packet Classification Using TCAM

    Masanori UGA  Masaaki OMOTANI  Kohei SHIOMOTO  

     
    PAPER-Internet

      Vol:
    E85-B No:9
      Page(s):
    1766-1773

    This paper proposes a novel packet classification method using ternary content-addressable memory (TCAM), which can store very wide policy rules despite the limited width of TCAM. For IP version 6, policy rules could be 304 bits wide. This method enables us to use commercially available TCAM for packet classification and thus builds an ultra high-speed policy based packet forwarding engine for differentiated services on the Internet.

  • A High-Throughput VLSI Architecture for LZFG Data Compression

    Jin-Ming CHEN  Che-Ho WEI  

     
    PAPER-VLSI Systems

      Vol:
    E85-D No:3
      Page(s):
    497-509

    This paper presents a high-throughput VLSI architecture for LZFG data compression and decompression. To reduce the hardware cost and maintain both of the interior node and the leaf node numbering systems, we modify the original LZFG data structure. Compared to the original LZFG tree, the number of characters in our modified LZFG data structure must be greater than one to establish one new interior node down the root node into the new node. Meanwhile, this architecture employs a series of encoding cells with content addressable memory (CAM) to search the longest match and maintain the LZFG data tree during the encoding and decoding processes. By using the parallel design, the compressor and decompressor can keep a constant high bit rate to encode and decode one character per clock cycle, that is, it is directly proportional to the operating clock rate, but independent of the sizes of the word dictionary and the input file. By using 0.25 µm CMOS silicon technology, the operating clock rate can be as high as 85 MHz. Some untargeted encoding cells will be disabled to reduce the power consumption during the comparison operation. Therefore, this architecture can be easily applied in the high-speed real-time communication and data storage systems.

  • The Possibility of Magnetic Resonance Imaging-Based Diagnosis of Alzheimer-Type Dementia

    Naoki KODAMA  Tetsuo SHIMADA  Yoshio KOBAYASHI  Kei HIWATASHI  Isao HIYOSHI  Makoto SHIBUKAWA  Yasuhiro KAWASE  Ichiro FUKUMOTO  

     
    LETTER-Medical Engineering

      Vol:
    E85-D No:3
      Page(s):
    592-596

    We studied the possibility of making an objective diagnosis of dementia based on radiological findings by evaluating cerebral and hippocampal atrophy and the corpus callosum shape on MRI images in patients with Alzheimer-type dementia, compared with healthy elderly individuals. There was a statistically significant difference in the hippocampus area index, the ventricle area index, and the area ratio for the second, forth, and fifth parts of corpus callosum. Discriminant analysis using these three parameters demonstrated the sensitivity of 88.5% and the specificity of 85.7%, suggesting a highly positive diagnostic rate. These results indicate that quantitative MRI measurements could be used for differentiating Alzheimer-type dementia from similar diseases.

  • Image Acquisition by Pixel-Based Random-Access Image Sensor for a Real-Time IBR System

    Ryutaro OI  Takayuki HAMAMOTO  Kiyoharu AIZAWA  

     
    PAPER-Signal Processing

      Vol:
    E85-C No:3
      Page(s):
    505-510

    We have studied an image acquisition system for a real-time image- based rendering (IBR) system. In this area, most conventional systems sacrifice spatial or temporal resolution for a large number of input images. However, only a portion of the image data is needed for rendering, and the portion required is determined by the position of the imaginary viewpoint. In this paper, we propose an acquisition system for a real-time image-based rendering system that uses pixel-based random-access image sensors to eliminate the main bottleneck in conventional systems. We have developed a prototype CMOS image sensor, which has 128 128 pixels. We verified the prototype chip's selective readout function. We also verified the sample & hold feature.

  • The 128-Bit Block Cipher Camellia

    Kazumaro AOKI  Tetsuya ICHIKAWA  Masayuki KANDA  Mitsuru MATSUI  Shiho MORIAI  Junko NAKAJIMA  Toshio TOKITA  

     
    PAPER

      Vol:
    E85-A No:1
      Page(s):
    11-24

    We present the new 128-bit block cipher called Camellia. Camellia supports 128-bit block size and 128-, 192-, and 256-bit key lengths, i.e. the same interface specifications as the Advanced Encryption Standard (AES). Camellia was carefully designed to withstand all known cryptanalytic attacks and even to have a sufficiently large security leeway. It was also designed to suit both software and hardware implementations and to cover all possible encryption applications that range from low-cost smart cards to high-speed network systems. Compared to the AES finalists, Camellia offers at least comparable encryption speed in software and hardware. An optimized implementation of Camellia in assembly language can encrypt on a Pentium III (1.13 GHz) at the rate of 471 Mbits per second. In addition, a distinguishing feature is its small hardware design. A hardware implementation, which includes encryption, decryption, and the key schedule for 128-bit keys, occupies only 9.66 K gates using a 0.35 µm CMOS ASIC library. This is in the smallest class among all existing 128-bit block ciphers. It perfectly meets the current market requirements in wireless cards, for instance, where low power consumption is essential.

  • High Sensitivity Radar-Optical Observations of Faint Meteors

    Koji NISHIMURA  Toru SATO  Takuji NAKAMURA  Masayoshi UEDA  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1877-1884

    In order to assess the possible impacts of meteors with spacecraft, which is among major hazard in the space environment, it is essential to establish an accurate statistics of their mass and velocity. We developed a radar-optical combined system for detecting faint meteors consisting of a powerful VHF Doppler radar and an ICCD video camera. The Doppler pulse compression scheme is used to enhance the S/N ratio of the radar echoes with very large Doppler shifts, as well as to determine their range with a resolution of 200 m. A very high sensitivity of more than 14 magnitude and 9 magnitude for radar and optical sensors, respectively, has been obtained. Instantaneous direction of meteor body observed by the radar is determined with the interferometry technique. We examined the optimum way of the receiving antenna arrangements, and also of the signal processing. Its absolute accuracy was confirmed by the optical observations with background stars as a reference. By combining the impinging velocity of meteor bodies derived by the radar with the absolute visual magnitude determined by the video camera simultaneously, the mass of each meteor body was estimated. The developed observation system will be used to create a valuable data base of the mass and velocity information of faint meteors, on which very little is known so far. The data base is expected to play a vital role in our understanding of the space environment needed for designing large space structures.

  • A Method for Compensation of Image Distortion with Image Registration Technique

    Toru TAMAKI  Tsuyoshi YAMAMURA  Noboru OHNISHI  

     
    PAPER

      Vol:
    E84-D No:8
      Page(s):
    990-998

    We propose a method for compensating distortion of image by calibrating intrinsic camera parameters by image registration which does not need point-to-point correspondence. The proposed method divides the registration between a calibration pattern and a distorted image observed by a camera into two steps. The first step is the straightforward registration from the pattern in order to correct the displacement due to projection. The second step is the backward registration from the observed image for compensating the distortion of the image. Both of the steps use Gauss-Newton method, a nonlinear optimization technique, to minimize residuals of intensities so that the pattern and the observed image become the same. Experimental results show the usefulness of the proposed method. Finally we discuss the convergence of the proposed method which consists of the two registration steps.

  • A Longest Match Table Look-up Method Using Pointer Cache

    Masanori UGA  Kohei SHIOMOTO  

     
    PAPER-Internet

      Vol:
    E84-B No:6
      Page(s):
    1664-1673

    We propose a fast and compact longest match table look-up method for very long network addresses like IP version 6. This method uses two ideas for a routing-table arranged in a tree-structure. The first idea is to make table look-up fast by caching pointers to intermediate nodes in the tree, reducing the number of node traversals. The second idea is to reduce the memory size required for each node in the tree by one-third by eliminating common parts of addresses of adjacent nodes. Evaluating the performance of this method by using actual routing table data of an IP backbone network, we found it was five to ten times faster than a conventional method.

  • Real-Time Tracking of Multiple Moving Object Contours in a Moving Camera Image Sequence

    Shoichi ARAKI  Takashi MATSUOKA  Naokazu YOKOYA  Haruo TAKEMURA  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E83-D No:7
      Page(s):
    1583-1591

    This paper describes a new method for detection and tracking of moving objects from a moving camera image sequence using robust estimation and active contour models. We assume that the apparent background motion between two consecutive image frames can be approximated by affine transformation. In order to register the static background, we estimate affine transformation parameters using LMedS (Least Median of Squares) method which is a kind of robust estimator. Split-and-merge contour models are employed for tracking multiple moving objects. Image energy of contour models is defined based on the image which is obtained by subtracting the previous frame transformed with estimated affine parameters from the current frame. We have implemented the method on an image processing system which consists of DSP boards for real-time tracking of moving objects from a moving camera image sequence.

  • A Multiple View Approach for Auto-Calibration of a Rotating and Zooming Camera

    Yongduek SEO  Min-Ho AHN  Ki-Sang HONG  

     
    PAPER

      Vol:
    E83-D No:7
      Page(s):
    1375-1385

    In this paper we deal with the problem of calibrating a rotating and zooming camera, without 3D pattern, whose internal calibration parameters change frame by frame. First, we theoretically show the existence of the calibration parameters up to an orthogonal transformation under the assumption that the skew of the camera is zero. Auto-calibration becomes possible by analyzing inter-image homographies which can be obtained from the matches in images of the same scene, or through direct nonlinear iteration. In general, at least four homographies are needed for auto-calibration. When we further assume that the aspect ratio is known and the principal point is fixed during the sequence then one homography yields camera parameters, and when the aspect ratio is assumed to be unknown with fixed principal point then two homographies are enough. In the case of a fixed principal point, we suggest a method for obtaining the calibration parameters by searching the space of the principal point. If this is not the case, then nonlinear iteration is applied. The algorithm is implemented and validated on several sets of synthetic data. Also experimental results for real images are given.

181-200hit(220hit)