The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CHAIN(220hit)

121-140hit(220hit)

  • Temporal Dependence Network Link Loss Inference from Unicast End-to-End Measurements

    Gaolei FEI  Guangmin HU  

     
    LETTER

      Vol:
    E95-B No:6
      Page(s):
    1974-1977

    In this letter, we address the issue of estimating the temporal dependence characteristic of link loss by using network tomography. We use a k-th order Markov chain (k > 1) to model the packet loss process, and estimate the state transition probabilities of the link loss model using a constrained optimization-based method. Analytical and simulation results indicate that our method yields more accurate packet loss probability estimates than existing loss inference methods.

  • Performance Analysis of Sleep Mode Operation in IEEE 802.16m Mobile WiMAX

    Sangkyu BAEK  Jung Je SON  Bong Dae CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:4
      Page(s):
    1357-1365

    We mathematically analyze the sleep mode operation of IEEE 802.16m. The sleep mode operation for downlink traffic is modeled as a 3-dimensional discrete time Markov chain. We obtain the average power consumption of a mobile station and the average delay of a message. Numerical results match simulations very well. Numerical results show that there is a tradeoff between power consumption and message delay. We find the optimal lengths of sleep cycle and close-down time that minimize the power consumption while satisfying the quality of service (QoS) constraint on message delay. The power consumption of the sleep mode in IEEE 802.16m is better than that of sleep modes in legacy IEEE 802.16e standard under the same delay bound.

  • Intelligent Local Avoided Collision (iLAC) MAC Protocol for Very High Speed Wireless Network

    Dinh Chi HIEU  Akeo MASUDA  Verotiana Hanitriniala RABARIJAONA  Shigeru SHIMAMOTO  

     
    PAPER-Network

      Vol:
    E95-B No:2
      Page(s):
    392-400

    Future wireless communication systems aim at very high data rates. As the medium access control (MAC) protocol plays the central role in determining the overall performance of the wireless system, designing a suitable MAC protocol is critical to fully exploit the benefit of high speed transmission that the physical layer (PHY) offers. In the latest 802.11n standard [2], the problem of long overhead has been addressed adequately but the issue of excessive colliding transmissions, especially in congested situation, remains untouched. The procedure of setting the backoff value is the heart of the 802.11 distributed coordination function (DCF) to avoid collision in which each station makes its own decision on how to avoid collision in the next transmission. However, collision avoidance is a problem that can not be solved by a single station. In this paper, we introduce a new MAC protocol called Intelligent Local Avoided Collision (iLAC) that redefines individual rationality in choosing the backoff counter value to avoid a colliding transmission. The distinguishing feature of iLAC is that it fundamentally changes this decision making process from collision avoidance to collaborative collision prevention. As a result, stations can avoid colliding transmissions with much greater precision. Analytical solution confirms the validity of this proposal and simulation results show that the proposed algorithm outperforms the conventional algorithms by a large margin.

  • Scalar Multiplication on Kummer Surface Revisited

    Qiping LIN  Fangguo ZHANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E95-A No:1
      Page(s):
    410-413

    The main benefit of HECC is that it has much smaller parameter sizes and offers equivalent security as ECC and RSA. However, there are still more researches on ECC than on HECC. One of the reasons is that the computation of scalar multiplication cannot catch up. The Kummer surface can speed up the scalar multiplication in genus two curves. In this paper, we find that the scalar multiplication formulas of Duquesne in characteristic p > 3 on the Kummer surface are not correct. We verify and revise the formulas with mathematical software. The operation counts become 29M + 2S for new pseudo-addition formulas and 30M + 10S for doubling ones. And then we speed up the scalar multiplication on the Kummer surface with Euclidean addition chains.

  • The Chain Effect for the Reputation-Based Trust Model in Peer-to-Peer Computing

    Sinjae LEE  Wonjun LEE  

     
    LETTER-Privacy

      Vol:
    E95-D No:1
      Page(s):
    177-180

    This letter analyzes a resource chain trust model for P2P reputation-based systems. Many researchers have given a lot of efforts to reputation-based system area and some of them have made good theoretical models. Problems are to spread malicious contents whereas the remark that such models only concentrate on the relationship between the node and its direct neighbors is still controversial. To solve the problems, we introduced the RCM (Resource Chain Model) and the Enhanced RCM. In this letter, we analyze the models and then show usage of our models can help us to find the best and safest location efficiently and decrease the number of malicious transaction.

  • Analytical Model of the Single Threshold Mechanism with Hysteresis for Multi-Service Networks

    Maciej SOBIERAJ  Maciej STASIAK  Joanna WEISSENBERG  Piotr ZWIERZYKOWSKI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E95-B No:1
      Page(s):
    120-132

    This paper presents a new generalized single threshold model that can be used in communications and cellular networks. In the proposed model, called Single Hysteresis Model (SHM), it is assumed that the amount of resources accessible for a new call of a given class can depend on two load areas of the system. The switching between areas is modulated by the two-state Markov chain which determines the average time the system spends in a particular load area, i.e. the area in which calls of selected classes with a reduced amount of resources (high load area) and with the initial amount of resources (low load area) are serviced. The results obtained for the discussed analytical model are compared with the results of the simulation of an exemplary WCDMA radio interface carrying a mixture of different multi-rate traffic streams. The research study confirms high accuracy of the proposed model.

  • Flexible Test Scheduling for an Asynchronous On-Chip Interconnect through Special Data Transfer

    Tsuyoshi IWAGAKI  Eiri TAKEDA  Mineo KANEKO  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E94-A No:12
      Page(s):
    2563-2570

    This paper proposes a test scheduling method for stuck-at faults in a CHAIN interconnect, which is an asynchronous on-chip interconnect architecture, with scan ability. Special data transfer which is permitted only during test, is exploited to realize a more flexible test schedule than that of a conventional approach. Integer linear programming (ILP) models considering such special data transfer are developed according to the types of modules under test in a CHAIN interconnect. The obtained models are processed by using an ILP solver. This framework can not only obtain optimal test schedules but also easily introduce additional constraints such as a test power budget. Experimental results using benchmark circuits show that the proposed method can reduce test application time compared to that achieved by the conventional method.

  • Modeling and Analysis for Universal Plug and Play Using PIPE2

    Cheng-Min LIN  Shyi-Shiou WU  Tse-Yi CHEN  

     
    PAPER-Computer System

      Vol:
    E94-D No:11
      Page(s):
    2184-2190

    Universal Plug and Play (UPnP) allows devices automatic discovery and control of services available in those devices connected to a Transmission Control Protocol/ Internet Protocol (TCP/IP) network. Although many products are designed using UPnP, little attention has been given to UPnP related to modeling and performance analysis. This paper uses a framework of Generalized Stochastic Petri Net (GSPN) to model and analyze the behavior of UPnP systems. The framework includes modeling UPnP, reachability decomposition, GSPN analysis, and reward assignment. Then, the Platform Independent Petri net Editor 2 (PIPE2) tool is used to model and evaluate the controllers in terms of power consumption, system utilization and network throughput. Through quantitative analysis, the steady states in the operation and notification stage dominate the system performance, and the control point is better than the device in power consumption but the device outperforms the control point in evaluating utilization. The framework and numerical results are useful to improve the quality of services provided in UPnP devices.

  • A Novel Framework for Spectrum Sensing in Cognitive Radio Networks

    Navid TAFAGHODI KHAJAVI  Siavash SADEGHI IVRIGH  Seyed Mohammad-Sajad SADOUGH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2600-2609

    Cognitive radio (CR) is a key solution for the problem of inefficient usage of spectral resources. Spectrum sensing in each CR aims at detecting whether a preassigned spectrum band is occupied by a primary user or not. Conventional techniques do not allow the CR to communicate with its own base station during the spectrum sensing process. So, only a part of the frame can be used for cognitive data transmission. In this paper, we introduce a new spectrum sensing framework that combines a blind source separation technique with conventional spectrum sensing techniques. In this way, the cognitive transmitter can continue to transmit during spectrum sensing, if it was in operation in the previous frame. Moreover, the accuracy is improved since the decision made by the spectrum unit in each frame depends on the decision made in the previous frame. We use Markov chain tools to model the behavior of our spectrum sensing proposal and to derive the parameters that characterize its performance. Numerical results are provided to confirm the superiority of the proposed technique compared to conventional spectrum sensing techniques.

  • Control of a Chain of Integrators with a Delay in the Input under Measurement Feedback

    Jae-Seung YOUN  Hyun-Do KIM  Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Vol:
    E94-A No:6
      Page(s):
    1464-1467

    In this letter, we consider a control problem of a chain of integrators with a delay in the input under measurement feedback. While there are several control results for our considered system, they have not dealt with any of measurement feedback problems. Our proposed controller is coupled with a low-pass filter such that it can attenuate the sensor noise effect and reduce the ultimate bounds of the controlled systems states. Our result shows that the proposed method has clear benefit over the existing results.

  • Energy-Efficient Hash Chain Traversal

    Dae Hyun YUM  Jae Woo SEO  Pil Joong LEE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E94-A No:3
      Page(s):
    955-963

    A hash chain H for a one-way hash function h(·) is a sequence of hash values < v0, v1, ..., vn >, where vn is a secret value, vi is generated by vi = h(vi+1) for i = n-1, n-2, ..., 0 and v0 is a public value. A hash chain traversal algorithm T computes and outputs the hash chain H, returning vi in time period (called round) i for 1 ≤ i ≤ n. At the outset, T stores carefully chosen κ hash values (including vn) of H in κ memory storages (called pebbles). In round i, T performs two kinds of computations; online computation to output vi with hash values stored in pebbles and then preparatory computation to rearrange pebbles for future rounds. Usually, the online computation consists of either one or zero hash function evaluation, while the preparatory computation occupies most of the computational cost. The design goal of previous hash chain traversal algorithms was to minimize the worst case computational cost per round with minimal pebbles. On the contrary, we study a different optimization problem of minimizing the average case computational cost. Our proposed traversal algorithm reduces the average case computational cost by 20-30% and the online computational cost by 23-33% for parameters of practical interest. For example, if the proposed algorithm is implemented on battery-powered devices, the battery lifetime can be increased by 20-30%.

  • A Compound Parallel Btree for High Scalability and Availability on Chained Declustering Parallel Systems

    Min LUO  Akitsugu WATANABE  Haruo YOKOTA  

     
    PAPER

      Vol:
    E94-D No:3
      Page(s):
    587-601

    Scalability and availability are the key features of parallel database systems. To realize scalability, many dynamic load-balancing methods with data placement and parallel index structures on shared-nothing parallel infrastructure have been proposed. Data migration with range-partitioned placement using a parallel Btree is one solution. The combination of range partitioning and chained declustered replicas provides high availability (HA) while preserving scalability. However, independent treatment of the primary and backup data in each node requires long failover times. We propose a novel method for the compound treatment of chained declustered replicas using a parallel Btree, termed the Fat-Btree. In the proposed method, a single Fat-Btree provides access paths to both the primary and backup data of all processor elements (PEs), which greatly reduces failover time. Moreover, these access paths overlap between two neighboring PEs, which enables dynamic load balancing without physical data migration by dynamically redirecting the access paths. In addition, this compound treatment improves memory space utilization to enable index processing with good scalability. Experiments using PostgreSQL on a 160-node PC cluster demonstrate the effectiveness of the high scalability and availability of our proposed method.

  • An Approximative Calculation of the Fractal Structure in Self-Similar Tilings

    Yukio HAYASHI  

     
    LETTER-Nonlinear Problems

      Vol:
    E94-A No:2
      Page(s):
    846-849

    Fractal structures emerge from statistical and hierarchical processes in urban development or network evolution. In a class of efficient and robust geographical networks, we derive the size distribution of layered areas, and estimate the fractal dimension by using the distribution without huge computations. This method can be applied to self-similar tilings based on a stochastic process.

  • Fast Verification of Hash Chains with Reduced Storage

    Dae Hyun YUM  Jin Seok KIM  Pil Joong LEE  Sung Je HONG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E94-A No:1
      Page(s):
    383-391

    A hash chain H for a hash function hash(·) is a sequence of hash values ⟨ xn, xn-1,..., x0 ⟩, where x0 is a secret value, xi is generated by xi = hash(xi-1) for 1 ≤ i ≤ n, and xn is a public value. Hash values of H are disclosed gradually from xn-1 to x0. The correctness of a disclosed hash value xi can be verified by checking the equation xn =? hashn-i(xi). To speed up the verification, Fischlin introduced a check-bit scheme at CT-RSA 2004. The basic idea of the check-bit scheme is to output some extra information cb, called a check-bit vector, in addition to the public value xn, which allows each verifier to perform only a fraction of the original work according to his or her own security level. We revisit the Fischlin's check-bit scheme and show that the length of the check-bit vector cb can be reduced nearly by half. The reduced length of cb is close to the theoretic lower bound.

  • Opportunistic Spectrum Access in Unslotted Primary Networks

    Yutae LEE  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E93-B No:11
      Page(s):
    3141-3143

    We propose an opportunistic spectrum access scheme for unslotted secondary users exploiting spectrum opportunities in unslotted primary networks. An analytical model is developed to investigate the performance of the proposed scheme, and numerical results are presented to evaluate the performance in unslotted primary networks.

  • Gaussian Process Regression with Measurement Error

    Yukito IBA  Shotaro AKAHO  

     
    PAPER

      Vol:
    E93-D No:10
      Page(s):
    2680-2689

    Regression analysis that incorporates measurement errors in input variables is important in various applications. In this study, we consider this problem within a framework of Gaussian process regression. The proposed method can also be regarded as a generalization of kernel regression to include errors in regressors. A Markov chain Monte Carlo method is introduced, where the infinite-dimensionality of Gaussian process is dealt with a trick to exchange the order of sampling of the latent variable and the function. The proposed method is tested with artificial data.

  • Probabilistic Priority Message Checking Modeling Based on Controller Area Networks

    Cheng-Min LIN  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E93-B No:8
      Page(s):
    2171-2175

    Although the probabilistic model checking tool called PRISM has been applied in many communication systems, such as wireless local area network, Bluetooth, and ZigBee, the technique is not used in a controller area network (CAN). In this paper, we use PRISM to model the mechanism of priority messages for CAN because the mechanism has allowed CAN to become the leader in serial communication for automobile and industry control. Through modeling CAN, it is easy to analyze the characteristic of CAN for further improving the security and efficiency of automobiles. The Markov chain model helps us to model the behaviour of priority messages.

  • Generalized Hash Chain Traversal with Selective Output

    Dae Hyun YUM  Jae Woo SEO  Kookrae CHO  Pil Joong LEE  

     
    LETTER-Data Engineering, Web Information Systems

      Vol:
    E93-D No:5
      Page(s):
    1303-1306

    A hash chain H for a one-way hash function h() is a sequence of hash values < v0, v1, ..., vn >, where v0 is a public value, vn a secret value, and vi = h(vi+1). A hash chain traversal T computes and outputs the hash chain H, returning vi in time period (called round) i for 1 ≤ i ≤ n. While previous hash chain traversal algorithms were designed to output all hash values vi (1 ≤ i ≤ n) in order, there are applications where every m-th hash value (i.e., vm, v2m, v3m, ...) is required to be output. We introduce a hash chain traversal algorithm that selectively outputs every m-th hash value efficiently. The main technique is a transformation from a hash chain traversal algorithm outputting every hash value into that outputting every m-th hash value. Compared with the direct use of previous hash chain traversal algorithms, our proposed method requires less memory storages and computational costs.

  • Analysis of an Adaptive P-Persistent MAC Scheme for WLAN Providing Delay Fairness

    Chih-Ming YEN  Chung-Ju CHANG  Yih-Shen CHEN  Ching Yao HUANG  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E93-B No:2
      Page(s):
    369-376

    The paper proposes and analyzes an adaptive p-persistent-based (APP) medium access control (MAC) scheme for IEEE 802.11 WLAN. The APP MAC scheme intends to support delay fairness for every station in each access, denoting small delay variance. It differentiates permission probabilities of transmission for stations which are incurred with various packet delays. This permission probability is designed as a function of the numbers of retransmissions and re-backoffs so that stations with larger packet delay are endowed with higher permission probability. Also, the scheme is analyzed by a Markov-chain analysis, where the collision probability, the system throughput, and the average delay are successfully obtained. Numerical results show that the proposed APP MAC scheme can attain lower mean delay and higher mean throughput. In the mean time, simulation results are given to justify the validity of the analysis, and also show that the APP MAC scheme can achieve more delay fairness than conventional algorithms.

  • Scan Chain Ordering to Reduce Test Data for BIST-Aided Scan Test Using Compatible Scan Flip-Flops

    Hiroyuki YOTSUYANAGI  Masayuki YAMAMOTO  Masaki HASHIZUME  

     
    PAPER

      Vol:
    E93-D No:1
      Page(s):
    10-16

    In this paper, the scan chain ordering method for BIST-aided scan test for reducing test data and test application time is proposed. In this work, we utilize the simple LFSR without a phase shifter as PRPG and configure scan chains using the compatible set of flip-flops with considering the correlations among flip-flops in an LFSR. The method can reduce the number of inverter codes required for inverting the bits in PRPG patterns that conflict with ATPG patterns. The experimental results for some benchmark circuits are shown to present the feasibility of our test method.

121-140hit(220hit)