Akira KITAYAMA Goichi ONO Hiroaki ITO
Edge devices with strict safety and reliability requirements, such as autonomous driving cars, industrial robots, and drones, necessitate software verification on such devices before operation. The human cost and time required for this analysis constitute a barrier in the cycle of software development and updating. In particular, the final verification at the edge device should at least strictly confirm that the updated software is not degraded from the current it. Since the edge device does not have the correct data, it is necessary for a human to judge whether the difference between the updated software and the operating it is due to degradation or improvement. Therefore, this verification is very costly. This paper proposes a novel automated method for efficient verification on edge devices of an object detection AI, which has found practical use in various applications. In the proposed method, a target object existence detector (TOED) (a simple binary classifier) judges whether an object in the recognition target class exists in the region of a prediction difference between the AI’s operating and updated versions. Using the results of this TOED judgement and the predicted difference, an automated verification system for the updated AI was constructed. TOED was designed as a simple binary classifier with four convolutional layers, and the accuracy of object existence judgment was evaluated for the difference between the predictions of the YOLOv5 L and X models using the Cityscapes dataset. The results showed judgement with more than 99.5% accuracy and 8.6% over detection, thus indicating that a verification system adopting this method would be more efficient than simple analysis of the prediction differences.
Xiaosheng YU Jianning CHI Ming XU
Accurate segmentation of fundus vessel structure can effectively assist doctors in diagnosing eye diseases. In this paper, we propose a fundus blood vessel segmentation network combined with cross-modal features and verify our method on the public data set OCTA-500. Experimental results show that our method has high accuracy and robustness.
Pingping WANG Xinyi ZHANG Yuyan ZHAO Yueti LI Kaisheng XU Shuaiyin ZHAO
Leukemia is a common and highly dangerous blood disease that requires early detection and treatment. Currently, the diagnosis of leukemia types mainly relies on the pathologist’s morphological examination of blood cell images, which is a tedious and time-consuming process, and the diagnosis results are highly subjective and prone to misdiagnosis and missed diagnosis. This research suggests a blood cell image recognition technique based on an enhanced Vision Transformer to address these problems. Firstly, this paper incorporate convolutions with token embedding to replace the positional encoding which represent coarse spatial information. Then based on the Transformer’s self-attention mechanism, this paper proposes a sparse attention module that can select identifying regions in the image, further enhancing the model’s fine-grained feature expression capability. Finally, this paper uses a contrastive loss function to further increase the intra-class consistency and inter-class difference of classification features. According to experimental results, The model in this study has an identification accuracy of 92.49% on the Munich single-cell morphological dataset, which is an improvement of 1.41% over the baseline. And comparing with sota Swin transformer, this method still get greater performance. So our method has the potential to provide reference for clinical diagnosis by physicians.
Mustafa Sami KACAR Semih YUMUSAK Halife KODAZ
The use of reports in action has grown significantly in recent decades as data has become digitized. However, traditional statistical methods no longer work due to the uncontrollable expansion and complexity of raw data. Therefore, it is crucial to clean and analyze financial data using modern machine learning methods. In this study, the quarterly reports (i.e. 10Q filings) of publicly traded companies in the United States were analyzed by utilizing data mining methods. The study used 8905 quarterly reports of companies from 2019 to 2022. The proposed approach consists of two phases with a combination of three different machine learning methods. The first two methods were used to generate a dataset from the 10Q filings with extracting new features, and the last method was used for the classification problem. Doc2Vec method in Gensim framework was used to generate vectors from textual tags in 10Q filings. The generated vectors were clustered using the K-means algorithm to combine the tags according to their semantics. By this way, 94000 tags representing different financial items were reduced to 20000 clusters consisting of these tags, making the analysis more efficient and manageable. The dataset was created with the values corresponding to the tags in the clusters. In addition, PriceRank metric was added to the dataset as a class label indicating the price strength of the companies for the next financial quarter. Thus, it is aimed to determine the effect of a company's quarterly reports on the market price of the company for the next period. Finally, a Convolutional Neural Network model was utilized for the classification problem. To evaluate the results, all stages of the proposed hybrid method were compared with other machine learning techniques. This novel approach could assist investors in examining companies collectively and inferring new, significant insights. The proposed method was compared with different approaches for creating datasets by extracting new features and classification tasks, then eventually tested with different metrics. The proposed approach performed comparatively better than the other machine learning methods to predict future price strength based on past reports with an accuracy of 84% on the created 10Q filings dataset.
M.K. JEEVARAJAN P. NIRMAL KUMAR
We present a reconfigurable deep learning pedestrian detection system for surveillance systems that detect people with shadows in different lighting and heavily occluded conditions. This work proposes a region-based CNN, combined with CMOS and thermal cameras to obtain human features even under poor lighting conditions. The main advantage of a reconfigurable system with respect to processor-based systems is its high performance and parallelism when processing large amount of data such as video frames. We discuss the details of hardware implementation in the proposed real-time pedestrian detection algorithm on a Zynq FPGA. Simulation results show that the proposed integrated approach of R-CNN architecture with cameras provides better performance in terms of accuracy, precision, and F1-score. The performance of Zynq FPGA was compared to other works, which showed that the proposed architecture is a good trade-off in terms of quality, accuracy, speed, and resource utilization.
Pengxu JIANG Yue XIE Cairong ZOU Li ZHAO Qingyun WANG
In human-computer interaction, acoustic scene classification (ASC) is one of the relevant research domains. In real life, the recorded audio may include a lot of noise and quiet clips, making it hard for earlier ASC-based research to isolate the crucial scene information in sound. Furthermore, scene information may be scattered across numerous audio frames; hence, selecting scene-related frames is crucial for ASC. In this context, an integrated convolutional neural network with a fusion attention mechanism (ICNN-FA) is proposed for ASC. Firstly, segmented mel-spectrograms as the input of ICNN can assist the model in learning the short-term time-frequency correlation information. Then, the designed ICNN model is employed to learn these segment-level features. In addition, the proposed global attention layer may gather global information by integrating these segment features. Finally, the developed fusion attention layer is utilized to fuse all segment-level features while the classifier classifies various situations. Experimental findings using ASC datasets from DCASE 2018 and 2019 indicate the efficacy of the suggested method.
Yasuyu FUKUSHIMA Kensuke IIZUKA Hideharu AMANO
We developed a PYNQ cluster that consists of economical Zynq boards, called M-KUBOS, that are interconnected through low-cost high-performance GTH serial links. For the software environment, we employed the PYNQ open-source software platform. The PYNQ cluster is anticipated to be a multi-access edge computing (MEC) server for 5G mobile networks. We implemented the ResNet-50 inference accelerator on the PYNQ cluster for image recognition of MEC applications. By estimating the execution time of each ResNet-50 layer, layers of ResNet-50 were divided into multiple boards so that the execution time of each board would be as equal as possible for efficient pipeline processing. Owing to the PYNQ cluster in which FPGAs were directly connected by high-speed serial links, stream processing without network bottlenecks and pipeline processing between boards were readily realized. The implementation on 4 boards achieved 292 GOPS performance, 75.1 FPS throughput, and 7.81 GOPS/W power efficiency. It achieved 17 times faster speed and 130 times more power efficiency compared to the implementation on the CPU, and 5.8 times more power efficiency compared to the implementation on the GPU.
Van-Cam NGUYEN Yasuhiko NAKASHIMA
Many deep convolutional neural network (CNN) inference accelerators on the field-programmable gate array (FPGA) platform have been widely adopted due to their low power consumption and high performance. In this paper, we develop the following to improve performance and power efficiency. First, we use a high bandwidth memory (HBM) to expand the bandwidth of data transmission between the off-chip memory and the accelerator. Second, a fully-pipelined manner, which consists of pipelined inter-layer computation and a pipelined computation engine, is implemented to decrease idle time among layers. Third, a multi-core architecture with shared-dual buffers is designed to reduce off-chip memory access and maximize the throughput. We designed the proposed accelerator on the Xilinx Alveo U280 platform with in-depth Verilog HDL instead of high-level synthesis as the previous works and explored the VGG-16 model to verify the system during our experiment. With a similar accelerator architecture, the experimental results demonstrate that the memory bandwidth of HBM is 13.2× better than DDR4. Compared with other accelerators in terms of throughput, our accelerator is 1.9×/1.65×/11.9× better than FPGA+HBM2 based/low batch size (4) GPGPU/low batch size (4) CPU. Compared with the previous DDR+FPGA/DDR+GPGPU/DDR+CPU based accelerators in terms of power efficiency, our proposed system provides 1.4-1.7×/1.7-12.6×/6.6-37.1× improvement with the large-scale CNN model.
For many fields in real life, time series forecasting is essential. Recent studies have shown that Transformer has certain advantages when dealing with such problems, especially when dealing with long sequence time input and long sequence time forecasting problems. In order to improve the efficiency and local stability of Transformer, these studies combine Transformer and CNN with different structures. However, previous time series forecasting network models based on Transformer cannot make full use of CNN, and they have not been used in a better combination of both. In response to this problem in time series forecasting, we propose the time series forecasting algorithm based on convolution Transformer. (1) ES attention mechanism: Combine external attention with traditional self-attention mechanism through the two-branch network, the computational cost of self-attention mechanism is reduced, and the higher forecasting accuracy is obtained. (2) Frequency enhanced block: A Frequency Enhanced Block is added in front of the ESAttention module, which can capture important structures in time series through frequency domain mapping. (3) Causal dilated convolution: The self-attention mechanism module is connected by replacing the traditional standard convolution layer with a causal dilated convolution layer, so that it obtains the receptive field of exponentially growth without increasing the calculation consumption. (4) Multi-layer feature fusion: The outputs of different self-attention mechanism modules are extracted, and the convolutional layers are used to adjust the size of the feature map for the fusion. The more fine-grained feature information is obtained at negligible computational cost. Experiments on real world datasets show that the time series network forecasting model structure proposed in this paper can greatly improve the real-time forecasting performance of the current state-of-the-art Transformer model, and the calculation and memory costs are significantly lower. Compared with previous algorithms, the proposed algorithm has achieved a greater performance improvement in both effectiveness and forecasting accuracy.
Ze Fu GAO Hai Cheng TAO Qin Yu ZHU Yi Wen JIAO Dong LI Fei Long MAO Chao LI Yi Tong SI Yu Xin WANG
Aiming at the problem of non-line of sight (NLOS) signal recognition for Ultra Wide Band (UWB) positioning, we utilize the concepts of Neural Network Clustering and Neural Network Pattern Recognition. We propose a classification algorithm based on self-organizing feature mapping (SOM) neural network batch processing, and a recognition algorithm based on convolutional neural network (CNN). By assigning different weights to learning, training and testing parts in the data set of UWB location signals with given known patterns, a strong NLOS signal recognizer is trained to minimize the recognition error rate. Finally, the proposed NLOS signal recognition algorithm is verified using data sets from real scenarios. The test results show that the proposed algorithm can solve the problem of UWB NLOS signal recognition under strong signal interference. The simulation results illustrate that the proposed algorithm is significantly more effective compared with other algorithms.
Takuto KANAMORI Takashi ODAN Kazuki HIROHATA Kenji KISE
Deep Neural Network (DNN) is widely used for computer vision tasks, such as image classification, object detection, and segmentation. DNN accelerator on FPGA and especially Convolutional Neural Network (CNN) is a hot topic. More research and education should be conducted to boost this field. A starting point is required to make it easy for new entrants to join this field. We believe that FPGA-based Autonomous Driving (AD) motor cars are suitable for this because DNN accelerators can be used for image processing with low latency. In this paper, we propose an FPGA-based simple and open-source mini motor car system named RVCar with a RISC-V soft processor and a CNN accelerator. RVCar is suitable for the new entrants who want to learn the implementation of a CNN accelerator and the surrounding system. The motor car consists of Xilinx Nexys A7 board and simple parts. All modules except the CNN accelerator are implemented in Verilog HDL and SystemVerilog. The CNN accelerator is converted from a PyTorch model by our tool. The accelerator is written in C++, synthesizable by Vitis HLS, and an easy-to-customize baseline for the new entrants. FreeRTOS is used to implement AD algorithms and executed on the RISC-V soft processor. It helps the users to develop the AD algorithms efficiently. We conduct a case study of the simple AD task we define. Although the task is simple, it is difficult to achieve without image recognition. We confirm that RVCar can recognize objects and make correct decisions based on the results.
Quan XIU HO Takao JINNO Yusuke UCHIMI Shigeru KURIYAMA
The colors of objects in natural images are affected by the color of lighting, and accurately estimating an illuminant's color is indispensable in analyzing scenes lit by colored lightings. Recent lighting environments enhance colorfulness due to the spread of light-emitting diode (LED) lightings whose colors are flexibly controlled in a full visible spectrum. However, existing color estimations mainly focus on the single illuminant of normal color ranges. The estimation of multiple illuminants of unusual color settings, such as blue or red of high chroma, has not been studied yet. Therefore, new color estimations should be developed for multiple illuminants of various colors. In this article, we propose a color estimation for LED lightings using Color Line features, which regards the color distribution as a straight line in a local area. This local estimate is suitable for estimating various colors of multiple illuminants. The features are sampled at many small regions in an image and aggregated to estimate a few global colors using supervised learning with a convolutional neural network. We demonstrate the higher accuracy of our method over existing ones for such colorful lighting environments by producing the image dataset lit by multiple LED lightings in a full-color range.
Pedestrian detection is a significant task in computer vision. In recent years, it is widely used in applications such as intelligent surveillance systems and automated driving systems. Although it has been exhaustively studied in the last decade, the occlusion handling issue still remains unsolved. One convincing idea is to first detect human body parts, and then utilize the parts information to estimate the pedestrians' existence. Many parts-based pedestrian detection approaches have been proposed based on this idea. However, in most of these approaches, the low-quality parts mining and the clumsy part detector combination is a bottleneck that limits the detection performance. To eliminate the bottleneck, we propose Discriminative Part CNN (DP-CNN). Our approach has two main contributions: (1) We propose a high-quality body parts mining method based on both convolutional layer features and body part subclasses. The mined part clusters are not only discriminative but also representative, and can help to construct powerful pedestrian detectors. (2) We propose a novel method to combine multiple part detectors. We convert the part detectors to a middle layer of a CNN and optimize the whole detection pipeline by fine-tuning that CNN. In experiments, it shows astonishing effectiveness of optimization and robustness of occlusion handling.
Masayuki ODAGAWA Tetsushi KOIDE Toru TAMAKI Shigeto YOSHIDA Hiroshi MIENO Shinji TANAKA
This paper presents examination result of possibility for automatic unclear region detection in the CAD system for colorectal tumor with real time endoscopic video image. We confirmed that it is possible to realize the CAD system with navigation function of clear region which consists of unclear region detection by YOLO2 and classification by AlexNet and SVMs on customizable embedded DSP cores. Moreover, we confirmed the real time CAD system can be constructed by a low power ASIC using customizable embedded DSP cores.
Masayuki ODAGAWA Takumi OKAMOTO Tetsushi KOIDE Toru TAMAKI Shigeto YOSHIDA Hiroshi MIENO Shinji TANAKA
In this paper, we present a classification method for a Computer-Aided Diagnosis (CAD) system in a colorectal magnified Narrow Band Imaging (NBI) endoscopy. In an endoscopic video image, color shift, blurring or reflection of light occurs in a lesion area, which affects the discrimination result by a computer. Therefore, in order to identify lesions with high robustness and stable classification to these images specific to video frame, we implement a CAD system for colorectal endoscopic images with the Convolutional Neural Network (CNN) feature and Support Vector Machine (SVM) classification on the embedded DSP core. To improve the robustness of CAD system, we construct the SVM learned by multiple image sizes data sets so as to adapt to the noise peculiar to the video image. We confirmed that the proposed method achieves higher robustness, stable, and high classification accuracy in the endoscopic video image. The proposed method also can cope with differences in resolution by old and new endoscopes and perform stably with respect to the input endoscopic video image.
Akira JINGUJI Shimpei SATO Hiroki NAKAHARA
Convolutional neural network (CNN) has a high recognition rate in image recognition and are used in embedded systems such as smartphones, robots and self-driving cars. Low-end FPGAs are candidates for embedded image recognition platforms because they achieve real-time performance at a low cost. However, CNN has significant parameters called weights and internal data called feature maps, which pose a challenge for FPGAs for performance and memory capacity. To solve these problems, we exploit a split-CNN and weight sparseness. The split-CNN reduces the memory footprint by splitting the feature map into smaller patches and allows the feature map to be stored in the FPGA's high-throughput on-chip memory. Weight sparseness reduces computational costs and achieves even higher performance. We designed a dedicated architecture of a sparse CNN and a memory buffering scheduling for a split-CNN and implemented this on the PYNQ-Z1 FPGA board with a low-end FPGA. An experiment on classification using VGG16 shows that our implementation is 3.1 times faster than the GPU, and 5.4 times faster than an existing FPGA implementation.
Lili WEI Zhenglong YANG Zhenming WANG Guozhong WANG
Since HEVC intra rate control has no prior information to rely on for coding, it is a difficult work to obtain the optimal λ for every coding tree unit (CTU). In this paper, a convolutional neural network (CNN) based intra rate control is proposed. Firstly, a CNN with two last output channels is used to predict the key parameters of the CTU R-λ curve. For well training the CNN, a combining loss function is built and the balance factor γ is explored to achieve the minimum loss result. Secondly, the initial CTU λ can be calculated by the predicted results of the CNN and the allocated bit per pixel (bpp). According to the rate distortion optimization (RDO) of a frame, a spatial equation is derived between the CTU λ and the frame λ. Lastly, The CTU clipping function is used to obtain the optimal CTU λ for the intra rate control. The experimental results show that the proposed algorithm improves the intra rate control performance significantly with a good rate control accuracy.
Yoichi MATSUO Tatsuaki KIMURA Ken NISHIMATSU
When a failure occurs in a network element, such as switch, router, and server, network operators need to recognize the service impact, such as time to recovery from the failure or severity of the failure, since service impact is essential information for handling failures. In this paper, we propose Deep learning based Service Impact Prediction system (DeepSIP), which predicts the service impact of network failure in a network element using a temporal multimodal convolutional neural network (CNN). More precisely, DeepSIP predicts the time to recovery from the failure and the loss of traffic volume due to the failure in a network on the basis of information from syslog messages and traffic volume. Since the time to recovery is useful information for a service level agreement (SLA) and the loss of traffic volume is directly related to the severity of the failure, we regard the time to recovery and the loss of traffic volume as the service impact. The service impact is challenging to predict, since it depends on types of network failures and traffic volume when the failure occurs. Moreover, network elements do not explicitly contain any information about the service impact. To extract the type of network failures and predict the service impact, we use syslog messages and past traffic volume. However, syslog messages and traffic volume are also challenging to analyze because these data are multimodal, are strongly correlated, and have temporal dependencies. To extract useful features for prediction, we develop a temporal multimodal CNN. We experimentally evaluated DeepSIP in terms of accuracy by comparing it with other NN-based methods by using synthetic and real datasets. For both datasets, the results show that DeepSIP outperformed the baselines.
Zhengjie LI Jiabao GAO Jinmei LAI
In recent years FPGA has become popular in CNN acceleration, and many CNN-to-FPGA toolchains are proposed to fast deploy CNN on FPGA. However, for these toolchains, updating CNN network means regeneration of RTL code and re-implementation which is time-consuming and may suffer timing-closure problems. So, we propose HBDCA: a toolchain and corresponding accelerator. The CNN on HBDCA is defined by the content of BRAM. The toolchain integrates UpdateMEM utility of Xilinx, which updates content of BRAM without re-synthesis and re-implementation process. The toolchain also integrates TensorFlow Lite which provides high-accuracy quantization. HBDCA supports 8-bits per-channel quantization of weights and 8-bits per-layer quantization of activations. Upgrading CNN on accelerator means the kernel size of CNN may change. Flexible structure of HBDCA supports kernel-level parallelism with three different sizes (3×3, 5×5, 7×7). HBDCA implements four types of parallelism in convolution layer and two types of parallelism in fully-connected layer. In order to reduce access number to memory, both spatial and temporal data-reuse techniques were applied on convolution layer and fully-connect layer. Especially, temporal reuse is adopted at both row and column level of an Input Feature Map of convolution layer. Data can be just read once from BRAM and reused for the following clock. Experiments show by updating BRAM content with single UpdateMEM command, three CNNs with different kernel size (3×3, 5×5, 7×7) are implemented on HBDCA. Compared with traditional design flow, UpdateMEM reduces development time by 7.6X-9.1X for different synthesis or implementation strategy. For similar CNN which is created by toolchain, HBDCA has smaller latency (9.97µs-50.73µs), and eliminates re-implementation when update CNN. For similar CNN which is created by dedicated design, HBDCA also has the smallest latency 9.97µs, the highest accuracy 99.14% and the lowest power 1.391W. For different CNN which is created by similar toolchain which eliminate re-implementation process, HBDCA achieves higher speedup 120.28X.
Kohei SAKAI Keita TAKAHASHI Toshiaki FUJII
Coded-aperture imaging has been utilized for compressive light field acquisition; several images are captured using different aperture patterns, and from those images, an entire light field is computationally reconstructed. This method has been extended to dynamic light fields (moving scenes). However, this method assumed that the patterns were gray-valued and of arbitrary shapes. Implementation of such patterns required a special device such as a liquid crystal on silicon (LCoS) display, which made the imaging system costly and prone to noise. To address this problem, we propose the use of a binary aperture pattern rotating along time, which can be implemented with a rotating plate with a hole. We demonstrate that although using such a pattern limits the design space, our method can still achieve a high reconstruction quality comparable to the original method.