The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

1761-1780hit(8214hit)

  • Defending against DDoS Attacks under IP Spoofing Using Image Processing Approach

    Tae Hwan KIM  Dong Seong KIM  Hee Young JUNG  

     
    PAPER-Internet

      Vol:
    E99-B No:7
      Page(s):
    1511-1522

    This paper presents a novel defense scheme for DDoS attacks that uses an image processing method. This scheme especially focused on the prevalence of adjacent neighbor spoofing, called subnet spoofing. It is rarely studied and there is few or no feasible approaches than other spoofing attacks. The key idea is that a “DDoS attack with IP spoofing” is represented as a specific pattern such as a “line” on the spatial image planes, which can be recognized through an image processing technique. Applying the clustering technique to the lines makes it possible to identify multiple attack source networks simultaneously. For the identified networks in which the zombie hosts reside, we then employ a signature-based pattern extraction algorithm, called a pivoted movement, and the DDoS attacks are filtered by correlating the IP and media access control pairing signature. As a result, this proposed scheme filters attacks without disturbing legitimate traffic. Unlike previous IP traceback schemes such as packet marking and path fingerprinting, which try to diagnose the entire attack path, our proposed scheme focuses on identifying only the attack source. Our approach can achieve an adaptive response to DDoS attacks, thereby mitigating them at the source, while minimizing the disruption of legitimate traffic. The proposed scheme is analyzed and evaluated on the IPv4 and IPv6 network topology from CAIDA, the results of which show its effectiveness.

  • Effective and Efficient Image Copy Detection with Resistance to Arbitrary Rotation

    Zhili ZHOU  Ching-Nung YANG  Beijing CHEN  Xingming SUN  Qi LIU  Q.M. Jonathan WU  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2016/03/07
      Vol:
    E99-D No:6
      Page(s):
    1531-1540

    For detecting the image copies of a given original image generated by arbitrary rotation, the existing image copy detection methods can not simultaneously achieve desirable performances in the aspects of both accuracy and efficiency. To address this challenge, a novel effective and efficient image copy detection method is proposed based on two global features extracted from rotation invariant partitions. Firstly, candidate images are preprocessed by an averaging operation to suppress noise. Secondly, the rotation invariant partitions of the preprocessed images are constructed based on pixel intensity orders. Thirdly, two global features are extracted from these partitions by utilizing image gradient magnitudes and orientations, respectively. Finally, the extracted features of images are compared to implement copy detection. Promising experimental results demonstrate our proposed method can effectively and efficiently resist rotations with arbitrary degrees. Furthermore, the performances of the proposed method are also desirable for resisting other typical copy attacks, such as flipping, rescaling, illumination and contrast change, as well as Gaussian noising.

  • On the Nonlinearity and Affine Equivalence Classes of C-F Functions

    Lei SUN  Fangwei FU  Xuang GUANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E99-A No:6
      Page(s):
    1251-1254

    Since 2008, three different classes of Boolean functions with optimal algebraic immunity have been proposed by Carlet and Feng [2], Wang et al.[8] and Chen et al.[3]. We call them C-F functions, W-P-K-X functions and C-T-Q functions for short. In this paper, we propose three affine equivalent classes of Boolean functions containing C-F functions, W-P-K-X functions and C-T-Q functions as a subclass, respectively. Based on the affine equivalence relation, we construct more classes of Boolean functions with optimal algebraic immunity. Moreover, we deduce a new lower bound on the nonlinearity of C-F functions, which is better than all the known ones.

  • The Convex Configurations of “Sei Shonagon Chie no Ita,” Tangram, and Other Silhouette Puzzles with Seven Pieces

    Eli FOX-EPSTEIN  Kazuho KATSUMATA  Ryuhei UEHARA  

     
    PAPER

      Vol:
    E99-A No:6
      Page(s):
    1084-1089

    The most famous silhouette puzzle is the tangram, which originated in China more than two centuries ago. From around the same time, there is a similar Japanese puzzle called Sei Shonagon Chie no Ita. Both are derived by cutting a square of material with straight incisions into seven pieces of varying shapes, and each can be decomposed into sixteen non-overlapping identical right isosceles triangles. It is known that the pieces of the tangram can form thirteen distinct convex polygons. We first show that the Sei Shonagon Chie no Ita can form sixteen. Therefore, in a sense, the Sei Shonagon Chie no Ita is more expressive than the tangram. We also propose more expressive patterns built from the same 16 identical right isosceles triangles that can form nineteen convex polygons. There exist exactly four sets of seven pieces that can form nineteen convex polygons. We show no set of seven pieces can form at least 20 convex polygons, and demonstrate that eleven pieces made from sixteen identical isosceles right triangles are necessary and sufficient to form 20 convex polygons. Moreover, no set of six pieces can form nineteen convex polygons.

  • A Visible Watermarking with Automated Location Technique for Copyright Protection of Portrait Images

    Antonio CEDILLO-HERNANDEZ  Manuel CEDILLO-HERNANDEZ  Francisco GARCIA-UGALDE  Mariko NAKANO-MIYATAKE  Hector PEREZ-MEANA  

     
    PAPER-Information Network

      Pubricized:
    2016/03/10
      Vol:
    E99-D No:6
      Page(s):
    1541-1552

    A visible watermarking technique to provide copyright protection for portrait images is proposed in this paper. The proposal is focused on real-world applications where a portrait image is printed and illegitimately used for commercial purposes. It is well known that this is one of the most difficult challenges to prove ownership through current watermark techniques. We propose an original approach which avoids the deficiencies of typical watermarking methods in practical scenarios by introducing a smart process to automatically detect the most suitable region of the portrait image, where the visible watermark goes unnoticed to the naked eye of a viewer and is robust enough to remain visible when printed. The position of the watermark is determined by performing an analysis of the portrait image characteristics taking into account several conditions of their spatial information together with human visual system properties. Once the location is set, the watermark embedding process is performed adaptively by creating a contrast effect between the watermark and its background. Several experiments are performed to illustrate the proper functioning of the proposed watermark algorithm on portrait images with different characteristics, including dimensions, backgrounds, illumination and texture, with the conclusion that it can be applied in many practical situations.

  • Layer-Aware 3D-IC Partitioning for Area-Overhead Reduction Considering the Power of Interconnections and Pads

    Yung-Hao LAI  Yang-Lang CHANG  Jyh-Perng FANG  Lena CHANG  Hirokazu KOBAYASHI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E99-A No:6
      Page(s):
    1206-1215

    Through-silicon vias (TSV) allow the stacking of dies into multilayer structures, and solve connection problems between neighboring tiers for three-dimensional (3D) integrated circuit (IC) technology. Several studies have investigated the placement and routing in 3D ICs, but not much has focused on circuit partitioning for 3D stacking. However, with the scaling trend of CMOS technology, the influence of the area of I/O pads, power/ground (P/G) pads, and TSVs should not be neglected in 3D partitioning technology. In this paper, we propose an iterative layer-aware partitioning algorithm called EX-iLap, which takes into account the area of I/O pads, P/G pads, and TSVs for area balancing and minimization of inter-tier interconnections in a 3D structure. Minimizing the quantity of TSVs reduces the total silicon die area, which is the main source of recurring costs during fabrication. Furthermore, estimations of the number of TSVs and the total area are somewhat imprecise if P/G TSVs are not taken into account. Therefore, we calculate the power consumption of each cell and estimate the number of P/G TSVs at each layer. Experimental results show that, after considering the power of interconnections and pads, our algorithm can reduce area-overhead by ~39% and area standard deviation by ~69%, while increasing the quantity of TSVs by only 12%, as compared to the algorithm without considering the power of interconnections and pads.

  • A Robust Algorithm for Extracting Signals with Temporal Structure

    Yibing LI  Wei NIE  Fang YE  

     
    PAPER-Biological Engineering

      Pubricized:
    2016/03/15
      Vol:
    E99-D No:6
      Page(s):
    1671-1677

    The separation of signals with temporal structure from mixed sources is a challenging problem in signal processing. For this problem, blind source extraction (BSE) is more suitable than blind source separation (BSS) because it has lower computation cost. Nowadays many BSE algorithms can be used to extract signals with temporal structure. However, some of them are not robust because they are too dependent on the estimation precision of time delay; some others need to choose parameters before extracting, which means that arbitrariness can't be avoided. In order to solve the above problems, we propose a robust source extraction algorithm whose performance doesn't rely on the choice of parameters. The algorithm is realized by maximizing the objective function that we develop based on the non-Gaussianity and the temporal structure of source signals. Furthermore, we analyze the stability of the algorithm. Simulation results show that the algorithm can extract the desired signal from large numbers of observed sensor signals and is very robust to error in the estimation of time delay.

  • Precise Vehicle Speed Measurement Based on a Hierarchical Homographic Transform Estimation for Law Enforcement Applications

    Hamed ESLAMI  Abolghasem A. RAIE  Karim FAEZ  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/03/11
      Vol:
    E99-D No:6
      Page(s):
    1635-1644

    Today, computer vision is used in different applications for intelligent transportation systems like: traffic surveillance, driver assistance, law enforcement etc. Amongst these applications, we are concentrating on speed measurement for law enforcement. In law enforcement applications, the presence of the license plate in the scene is a presupposition and metric parameters like vehicle's speed are to be estimated with a high degree of precision. The novelty of this paper is to propose a new precise, practical and fast procedure, with hierarchical architecture, to estimate the homraphic transform of the license plate and using this transform to estimate the vehicle's speed. The proposed method uses the RANSAC algorithm to improve the robustness of the estimation. Hence, it is possible to replace the peripheral equipment with vision based systems, or in conjunction with these peripherals, it is possible to improve the accuracy and reliability of the system. Results of experiments on different datasets, with different specifications, show that the proposed method can be used in law enforcement applications to measure the vehicle's speed.

  • Extended Dual Virtual Paths Algorithm Considering the Timing Requirements of IEC61850 Substation Message Types

    Seokjoon HONG  Ducsun LIM  Inwhee JOE  

     
    PAPER-Information Network

      Pubricized:
    2016/03/07
      Vol:
    E99-D No:6
      Page(s):
    1563-1575

    The high-availability seamless redundancy (HSR) protocol is a representative protocol that fulfills the reliability requirements of the IEC61850-based substation automation system (SAS). However, it has the drawback of creating unnecessary traffic in a network. To solve this problem, a dual virtual path (DVP) algorithm based on HSR was recently presented. Although this algorithm dramatically reduces network traffic, it does not consider the substation timing requirements of messages in an SAS. To reduce unnecessary network traffic in an HSR ring network, we introduced a novel packet transmission (NPT) algorithm in a previous work that considers IEC61850 message types. To further reduce unnecessary network traffic, we propose an extended dual virtual paths (EDVP) algorithm in this paper that considers the timing requirements of IEC61850 message types. We also include sending delay (SD), delay queue (DQ), and traffic flow latency (TFL) features in our proposal. The source node sends data frames without SDs on the primary paths, and it transmits the duplicate data frames with SDs on the secondary paths. Since the EDVP algorithm discards all of the delayed data frames in DQs when there is no link or node failure, unnecessary network traffic can be reduced. We demonstrate the principle of the EDVP algorithm and its performance in terms of network traffic compared to the standard HSR, NPT, and DVP algorithm using the OPNET network simulator. Throughout the simulation results, the EDVP algorithm shows better traffic performance than the other algorithms, while guaranteeing the timing requirements of IEC61850 message types. Most importantly, when the source node transmits heavy data traffic, the EDVP algorithm shows greater than 80% and 40% network traffic reduction compared to the HSR and DVP approaches, respectively.

  • Cultivating Listening Skills for Academic English Based on Strategy Object Mashups Approach

    Hangyu LI  Hajime KIRA  Shinobu HASEGAWA  

     
    PAPER-Educational Technology

      Pubricized:
    2016/03/22
      Vol:
    E99-D No:6
      Page(s):
    1615-1625

    This paper aims to support the cultivation of proper cognitive skills for academic English listening. First of all, this paper identified several listening strategies proved to be effective for cultivating listening skills through past research and builds up the respective strategy models, based on which we designed and developed various functional units as strategy objects, and the mashup environment where these function units can be assembled to serve as a personal learning environment. We also attached listening strategies and tactics to each object, in order to make learners aware of the related strategies and tactics applied during learning. Both short-term and mid-term case studies were carried out, and the data collected showed several positive results and some interesting indications.

  • A Novel Time Delay Estimation Interpolation Algorithm Based on Second-Order Cone Programming

    Zhixin LIU  Dexiu HU  Yongjun ZHAO  Chengcheng LIU  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E99-B No:6
      Page(s):
    1311-1317

    Considering the obvious bias of the traditional interpolation method, a novel time delay estimation (TDE) interpolation method with sub-sample accuracy is presented in this paper. The proposed method uses a generalized extended approximation method to obtain the objection function. Then the optimized interpolation curve is generated by Second-order Cone programming (SOCP). Finally the optimal TDE can be obtained by interpolation curve. The delay estimate of proposed method is not forced to lie on discrete samples and the sample points need not to be on the interpolation curve. In the condition of the acceptable computation complexity, computer simulation results clearly indicate that the proposed method is less biased and outperforms the other interpolation algorithms in terms of estimation accuracy.

  • Sparse Trajectory Prediction Method Based on Entropy Estimation

    Lei ZHANG  Leijun LIU  Wen LI  

     
    PAPER

      Pubricized:
    2016/04/01
      Vol:
    E99-D No:6
      Page(s):
    1474-1481

    Most of the existing algorithms cannot effectively solve the data sparse problem of trajectory prediction. This paper proposes a novel sparse trajectory prediction method based on L-Z entropy estimation. Firstly, the moving region of trajectories is divided into a two-dimensional plane grid graph, and then the original trajectories are mapped to the grid graph so that each trajectory can be represented as a grid sequence. Secondly, an L-Z entropy estimator is used to calculate the entropy value of each grid sequence, and then the trajectory which has a comparatively low entropy value is segmented into several sub-trajectories. The new trajectory space is synthesised by these sub-trajectories based on trajectory entropy. The trajectory synthesis can not only resolve the sparse problem of trajectory data, but also make the new trajectory space more credible. In addition, the trajectory scale is limited in a certain range. Finally, under the new trajectory space, Markov model and Bayesian Inference is applied to trajectory prediction with data sparsity. The experiments based on the taxi trajectory dataset of Microsoft Research Asia show the proposed method can make an effective prediction for the sparse trajectory. Compared with the existing methods, our method needs a smaller trajectory space and provides much wider predicting range, faster predicting speed and better predicting accuracy.

  • Predicting Performance of Collaborative Storytelling Using Multimodal Analysis

    Shogo OKADA  Mi HANG  Katsumi NITTA  

     
    PAPER

      Pubricized:
    2016/04/01
      Vol:
    E99-D No:6
      Page(s):
    1462-1473

    This study focuses on modeling the storytelling performance of the participants in a group conversation. Storytelling performance is one of the fundamental communication techniques for providing information and entertainment effectively to a listener. We present a multimodal analysis of the storytelling performance in a group conversation, as evaluated by external observers. A new multimodal data corpus is collected through this group storytelling task, which includes the participants' performance scores. We extract multimodal (verbal and nonverbal) features regarding storytellers and listeners from a manual description of spoken dialog and from various nonverbal patterns, including each participant's speaking turn, utterance prosody, head gesture, hand gesture, and head direction. We also extract multimodal co-occurrence features, such as head gestures, and interaction features, such as storyteller utterance overlapped with listener's backchannel. In the experiment, we modeled the relationship between the performance indices and the multimodal features using machine-learning techniques. Experimental results show that the highest accuracy (R2) is 0.299 for the total storytelling performance (sum of indices scores) obtained with a combination of verbal and nonverbal features in a regression task.

  • Key Frame Extraction Based on Chaos Theory and Color Information for Video Summarization

    Jaeyong JU  Taeyup SONG  Bonhwa KU  Hanseok KO  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2016/02/23
      Vol:
    E99-D No:6
      Page(s):
    1698-1701

    Key frame based video summarization has emerged as an important task for efficient video data management. This paper proposes a novel technique for key frame extraction based on chaos theory and color information. By applying chaos theory, a large content change between frames becomes more chaos-like and results in a more complex fractal trajectory in phase space. By exploiting the fractality measured in the phase space between frames, it is possible to evaluate inter-frame content changes invariant to effects of fades and illumination change. In addition to this measure, the color histogram-based measure is also used to complement the chaos-based measure which is sensitive to changes of camera /object motion. By comparing the last key frame with the current frame based on the proposed frame difference measure combining these two complementary measures, the key frames are robustly selected even under presence of video fades, changes of illumination, and camera/object motion. The experimental results demonstrate its effectiveness with significant improvement over the conventional method.

  • Efficient Two-Step Middle-Level Part Feature Extraction for Fine-Grained Visual Categorization

    Hideki NAKAYAMA  Tomoya TSUDA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/02/23
      Vol:
    E99-D No:6
      Page(s):
    1626-1634

    Fine-grained visual categorization (FGVC) has drawn increasing attention as an emerging research field in recent years. In contrast to generic-domain visual recognition, FGVC is characterized by high intra-class and subtle inter-class variations. To distinguish conceptually and visually similar categories, highly discriminative visual features must be extracted. Moreover, FGVC has highly specialized and task-specific nature. It is not always easy to obtain a sufficiently large-scale training dataset. Therefore, the key to success in practical FGVC systems is to efficiently exploit discriminative features from a limited number of training examples. In this paper, we propose an efficient two-step dimensionality compression method to derive compact middle-level part-based features. To do this, we compare both space-first and feature-first convolution schemes and investigate their effectiveness. Our approach is based on simple linear algebra and analytic solutions, and is highly scalable compared with the current one-vs-one or one-vs-all approach, making it possible to quickly train middle-level features from a number of pairwise part regions. We experimentally show the effectiveness of our method using the standard Caltech-Birds and Stanford-Cars datasets.

  • Lexical Network Analysis on an Online Explanation Task: Effects of Affect and Embodiment of a Pedagogical Agent

    Yugo HAYASHI  

     
    PAPER

      Pubricized:
    2016/04/01
      Vol:
    E99-D No:6
      Page(s):
    1455-1461

    The present study investigated the performance of text-based explanation for a large number of learners in an online tutoring task guided by a Pedagogical Conversational Agent (PCA). In the study, a lexical network analysis that focused on the co-occurrence of keywords in learner's explanation text, which were used as dependent variables, was performed. This method was used to investigate how the variables, which consisted of expressions of emotion, embodied characteristics of the PCA, and personal characteristics of the learner, influenced the performance of the explanation text. The learners (participants) were students enrolled in a psychology class. The learners provided explanations to a PCA one-on-one as an after-school activity. In this activity, the PCA, portraying the role of a questioner, asked the learners to explain a key concept taught in their class. The students were randomly assigned one key term out of 30 and were asked to formulate explanations by answering different types of questions. The task consisted of 17 trials. More than 300 text-based explanation dialogues were collected from learners using a web-based explanation system, and the factors influencing learner performance were investigated. Machine learning results showed that during the explanation activity, the expressions used and the gender of the PCA influenced learner performance. Results showed that (1) learners performed better when a male PCA expressed negative emotions as opposed to when a female PCA expressed negative emotions, and (2) learners performed better when a female PCA expressed positive expressions as opposed to when a female PCA expressed negative expressions. This paper provides insight into capturing the behavior of humans performing online tasks, and it puts forward suggestions related to the design of an efficient online tutoring system using PCA.

  • Inductance and Current Distribution Extraction in Nb Multilayer Circuits with Superconductive and Resistive Components Open Access

    Coenrad FOURIE  Naoki TAKEUCHI  Nobuyuki YOSHIKAWA  

     
    INVITED PAPER

      Vol:
    E99-C No:6
      Page(s):
    683-691

    We describe a calculation tool and modeling methods to find self and mutual inductance and current distribution in superconductive multilayer circuit layouts. Accuracy of the numerical solver is discussed and compared with experimental measurements. Effects of modeling parameter selection on calculation results are shown, and we make conclusions on the selection of modeling parameters for fast but sufficiently accurate calculations when calibration methods are used. Circuit theory for the calculation of branch impedances from the output of the numerical solver is discussed, and compensation for solution difficulties is shown through example. We elaborate on the construction of extraction models for superconductive integrated circuits, with and without resistive branches. We also propose a method to calculate current distribution in a multilayer circuit with multiple bias current feed points. Finally, detailed examples are shown where the effects of stacked vias, bias pillars, coupling, ground connection stacks and ground return currents in circuit layouts for the AIST advanced process (ADP2) and standard process (STP2) are analyzed. We show that multilayer inductance and current distribution extraction in such circuits provides much more information than merely branch inductance, and can be used to improve layouts; for example through reduced coupling between conductors.

  • A Comprehensive Medicine Management System with Multiple Sources in a Nursing Home in Taiwan

    Liang-Bi CHEN  Wan-Jung CHANG  Kuen-Min LEE  Chi-Wei HUANG  Katherine Shu-Min LI  

     
    PAPER

      Pubricized:
    2016/04/01
      Vol:
    E99-D No:6
      Page(s):
    1447-1454

    Residents living in a nursing home usually have established medical histories in multiple sources, and most previous medicine management systems have only focused on the integration of prescriptions and the identification of repeated drug uses. Therefore, a comprehensive medicine management system is proposed to integrate medical information from different sources. The proposed system not only detects inappropriate drugs automatically but also allows users to input such information for any non-prescription medicines that the residents take. Every participant can fully track the residents' latest medicine use online and in real time. Pharmacists are able to issue requests for suggestions on medicine use, and residents can also have a comprehensive understanding of their medicine use. The proposed scheme has been practically implemented in a nursing home in Taiwan. The evaluation results show that the average time to detect an inappropriate drug use and complete a medicine record is reduced. With automatic and precise comparisons, the repeated drugs and drug side effects are identified effectively such that the amount of medicine cost spent on the residents is also reduced. Consequently, the proactive feedback, real-time tracking, and interactive consulting mechanisms bind all parties together to realize a comprehensive medicine management system.

  • A Novel Dictionary-Based Method for Test Data Compression Using Heuristic Algorithm

    Diancheng WU  Jiarui LI  Leiou WANG  Donghui WANG  Chengpeng HAO  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E99-C No:6
      Page(s):
    730-733

    This paper presents a novel data compression method for testing integrated circuits within the selective dictionary coding framework. Due to the inverse value of dictionary indices made use of for the compatibility analysis with the heuristic algorithm utilized to solve the maximum clique problem, the method can obtain a higher compression ratio than existing ones.

  • A Sensor Data Stream Delivery Method to Accommodate Heterogeneous Cycles on Cloud

    Tomoya KAWAKAMI  Yoshimasa ISHI  Tomoki YOSHIHISA  Yuuichi TERANISHI  

     
    PAPER-Network

      Vol:
    E99-B No:6
      Page(s):
    1331-1340

    In the future Internet of Things/M2M network, enormous amounts of data generated from sensors must be processed and utilized by cloud applications. In recent years, sensor data stream delivery, which collects and sends sensor data periodically, has been attracting great attention. As for sensor data stream delivery, the receivers have different delivery cycle requirements depending on the applications or situations. In this paper, we propose a sensor data stream delivery method to accommodate heterogeneous cycles on the cloud. The proposed method uses distributed hashing to determine relay nodes on the cloud and construct delivery paths autonomously. We evaluate the effectiveness of the proposed method in simulations. The simulation results show that the proposed method halves the maximum load of nodes compared to the baseline methods and achieves high load balancing.

1761-1780hit(8214hit)