The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] DOT(71hit)

61-71hit(71hit)

  • A Compact Model for the Current-Voltage Characteristics of a Single Electron Transistor in the Resonant Transport Mode

    Kenji NATORI  Nobuyuki SANO  

     
    PAPER-Quantum Devices and Circuits

      Vol:
    E82-C No:9
      Page(s):
    1599-1606

    The current-voltage characteristics of a single electron transistor (SET) in the resonant transport mode are investigated. In the future when SET devices are applied to integrated electronics, the quantum effect will seriously modify their characteristics in ultra-small geometry. The current will be dominated by the resonant transport through narrow energy levels in the dot. The simple case of a two-level system is analyzed and the transport mechanism is clarified. The transport property at low temperatures (higher than the Kondo temperature) in the low tunneling rate limit is discussed, and a current map where current values are classified in the gate bias-drain bias plane is provided. It was shown that the dynamic aspect of electron flow seriously influences the current value.

  • Quantum-Dot Based Opto-Electronic Device

    Kazumasa NOMOTO  Ryuichi UGAJIN  Toshi-kazu SUZUKI  Kenichi TAIRA  Ichiro HASE  

     
    PAPER

      Vol:
    E81-C No:1
      Page(s):
    8-15

    We propose a novel opto-electronic memory device using a single quantum dot (QD) and a logic device using coupled QDs (CQD) which performs (N)AND and (N)OR operations simultaneously. In both devices, occupation/unoccupation by a single electron in a QD is viewed as a bit 1/0 and data input/output (I/O) is performed by irradiation/absorption of photons. The (N)AND/(N)OR operations are performed by the relaxation of the electronic system to the Fock ground state which depends on the number of electrons in the CQD. When the device is constructed of semiconductor nanostructures, the main relaxation process is LA-phonon emission from an electron. Theoretical analysis of the device shows that (i) the error probability in the final state converges with the probability with which the system takes excited states at thermal equilibrium, i. e. , depends only on the dissipation energy and becomes smaller as the dissipation energy becomes larger, and (ii) the speed of operation depends on both the dissipation energy and dissipative interactions and becomes slower as the dissipation energy becomes larger if LA-phonon emission is taken into account. If the QDs are InAs cubes with sides of 10 nm and they are separated by the AlSb barrier with a width of 10 nm, the speed of operation and the error probability are estimated to be about 1 ns and about 0. 2 at 77 K, respectively. The basic idea of the device is applicable to two-dimensional (2D) pattern processing if the devices are arranged in a 2D array.

  • Some Observations Concerning Alternating Pushdown Automata with Sublogarithmic Space

    Jianliang XU  Katsushi INOUE  Yue WANG  Akira ITO  

     
    LETTER-Automata,Languages and Theory of Computing

      Vol:
    E80-D No:12
      Page(s):
    1221-1226

    This paper first investigates a relationship between inkdot-depth and inkdot-size of inkdot two-way alternating Turing machines and pushdown automata with sublogarithmic space, and shows that there exists a language accepted by a strongly loglog n space-bounded alternating pushdown automaton with inkdot-depth 1, but not accepted by any weakly o (log n) space-bounded and d (n) inkdot-size bounded alternating Turing machine, for any function d (n) such that limn [d (n)log n/n1/2] = 0. In this paper, we also show that there exists an infinite space hierarchy among two-way alternating pushdown automata with sublogarithmic space.

  • Nonlinear Coherent Excitonic Solid Gates for Quantum Computation

    Hideaki MATSUEDA  Shozo TAKENO  

     
    PAPER

      Vol:
    E80-A No:9
      Page(s):
    1610-1615

    The dipole-dipole interaction among excitons is shown to give rise to an intrinsic nonlinearity, which yields a localized mode in a forbidden band, providing a coherent state for quantum computation. Employing this mode, a quantum XOR (exclusive OR) gate is proposed. A block structure of quantum dot arrays is also proposed, to implement quantum circuits comprising the quantum XOR gates for computation.

  • On Multi-Inkdot Two-Way Alternating Turing Machines and Pushdown Automata with Sublogarithmic Space and Constant Leaf-Size

    Jianliang XU  Katsushi INOUE  Yue WANG  Akira ITO  

     
    LETTER-Automata,Languages and Theory of Computing

      Vol:
    E80-D No:1
      Page(s):
    86-90

    This paper investigates the accepting powers of multi-inkdot two-way alternating pushdown automata (Turing machines) with sublogarithmic space and constant leaf-size. For each k1, and each m0, let weak-ASPACEm [L(n),k] denote the class of languages accepted by simultaneously weakly L(n) space-bounded and k leaf-bounded m-inkdot two-way alternating Turing machines, and let strong-2APDAm[L(n),k] denote the class of languages accepted by simultaneously strongly L(n) space-bounded and k leaf-bounded m-inkdot two-way alternating pushdown automata. We show that(1) strong-2APDAm [log log n,k+1]weak-ASPACEm[o(log n),k]φfor each k1 and each m1, and(2) strong-2APDA(m+1) [log log n,k]weak-ASPACEm[o(log n),k]φfor each k1 and each m0.

  • Growth and Optical Properties of Self-Assembled Quantum Dots for Semiconductor Lasers with Confined Electrons and Photons

    Yasuhiko ARAKAWA  Masao NISHIOKA  Hajime NAKAYAMA  Masaki KITAMURA  

     
    INVITED PAPER

      Vol:
    E79-C No:11
      Page(s):
    1487-1494

    We discuss fabrication of InGaAs quantum dot structures using the self-assembling growth technique with the Stranski-Krastanow growth mode in MOCVD, including optical ploperties of the nano-structures. The formation process of the quantum dot islands was clarified by observing the samples grown under various conditions with an atomic force microscope. A trial for self-alignment of the quantum dots was also investigated. On the basis of these results, as the first step toward the ultimate semiconductor lasers in which both electrons and photons are fully quantized, a vertical microcavity InGaAs/GaAs quantum dot laser was demonstrated. Finally a perspective of the quantum dot lasers is discussed, including the bottleneck issues and the impact of the quantum dot structures for reducing threshold current in wide bandgap lasers such as GaN lasers.

  • InGaAs/GaAs Tetrahedral-Shaped Recess Quantum Dot(TSR-QD)Technology

    Yuji AWANO  Yoshiki SAKUMA  Yoshihiro SUGIYAMA  Takashi SEKIGUCHI  Shunichi MUTO  Naoki YOKOYAMA  

     
    PAPER

      Vol:
    E79-C No:11
      Page(s):
    1557-1561

    This paper discusses our newly developed technology for making GaAs/InGaAs/GaAs Tetrahedral-Shaped Recess (TSR) quantum dots. The heterostructures were grown by low-pressure MOVPE in tetrahedral-shaped recesses created on a (111) B oriented GaAs substrate using anisotropic chemical etching. We examined these structures by using cathodoluminescence (CL) measurements, and observed lower energy emissions from the bottoms of, and higher energy emissions from the walls of the TSRs. This suggests carrier confinement at the bottoms with the lowest potential energy. We carried out microanlaysis of the structures by using TEM and EDX, and found an In-rich region that had grown vertically from the bottom of the TSR with a (111)B-like bond configuration. We also measured a smaller diamagnetic shift of the lower energy photoluminecscence (PL) peak in the structure. Based on these results, we have concluded that the quantum dots are formed at the bottoms of TSRs, mainly because of the dependence of InAs composition on the local crystalline structure in this system. We also studied the lateral distribution and vertical alignment of TSR quantum dots by CL and PL measurements respectively. The advantages of TSR quantum dot technology can be summarized as follows: (i) better control in dot positioning in the lateral direction, (ii) realization of dot sizes exceeding limitations posed by lithography, (iii) high uniformity of dot size, and (iv) vertical alignment of quantum dots.

  • The Possibility of Higher Temperature Operation in Quantum Cellular Automata (QCA)

    Tetsufumi TANAMOTO  Riichi KATOH  

     
    PAPER

      Vol:
    E79-C No:11
      Page(s):
    1550-1556

    Quantum Cellular Automaton (QCA), which is one of the candidates for future integrable electron devices, is investigated from the viewpoint of operation temperature. The extended Hubbard model which can extract the physical essence of QCA is used to analyze the inter-cell interaction for a layered cell structure. We found that the operation energy estimated from the energy gap between the ground state and excited states of the layered structure is large enough to allow room temperature operation even if the size of quantum dot is as large as 500. The layered cell structure is found to be suitable for a memory application.

  • Nonlinear Attractive Force Model for Perceptual Clustering and Geometrical Illusions

    Hiroyuki MATSUNAGA  Kiichi URAHAMA  

     
    PAPER-Neural Nets and Human Being

      Vol:
    E79-A No:10
      Page(s):
    1587-1594

    A mathematical model based on an optimization formulation is presented for perceptual clustering of dot patterns. The features in the present model are its nonlinearity enabling the model to reveal hysteresis phenomena and its scale invariance. The clustering of dots is given by the mutual linking of dots by virtual lines. Every dot is assumed to be perceived at locations displaced from their original places. It is exemplified with simulations that the model can produce a hierarchical clustering of dots by variation in thresholds for the wiring of virtual lines and also the model can additionally reproduce some geometrical illusions semiquantitatively. This model is further extended for perceptual grouping in line segment patterns and geometrical illusions obsrved in those patterns are reproduced by the extended model.

  • Fabrication of Silicon Quantum Wires and Dots

    Yoshihiko HIRAI  Kiyoshi MORIMOTO  Masaaki NIWA  Koichiro YUKI  Juro YASUI  

     
    PAPER

      Vol:
    E77-C No:9
      Page(s):
    1426-1430

    Fabrication methods of novel silicon quantum wires and dots using anisotropic wet chemical etching and thermal oxidation are newly proposed. The method realizes fine Si quantum wires, which are fully surrounded by the thermal SiO2 without any defects. The wires are straight and the Si/SiO2 interfaces are fairly flat. The 10 nm width wires are confirmed by Transmitting Scanning Microscopy observation in minimum size. The fine quantum dots are also fabricated using this method. The characteristics of the wires are investigated and the current oscillations in variation with the gate voltage are observed in low temperature. We believe the origin of these oscillations arise from one-dimensional subband conduction.

  • Effect of 2.45GHz Microwave Irradiation on Monkey Eyes

    Yoshitsugu KAMIMURA  Ken-ichi SAITO  Toshikazu SAIGA  Yoshifumi AMEMIYA  

     
    LETTER

      Vol:
    E77-B No:6
      Page(s):
    762-765

    In 1985, Kues et al. (Bioelectromagnetics, 6, pp.177-188, 1985) reported that corneal endothelial abnormalities were observed after a 4-hour exposure of anesthetized monkey eyes to 2.45GHz CW. We have traced their experimental study without anesthetization. Although we irradiated with power density exceeding the threshold of 30mW/cm2 obtained by them, we could not observe the same abnormalities as they did.

61-71hit(71hit)