The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] DOT(71hit)

21-40hit(71hit)

  • Effect of Arrangement of Input Gates on Logic Switching Characteristics of Nanodot Array Device

    Mingu JO  Yuki KATO  Masashi ARITA  Yukinori ONO  Akira FUJIWARA  Hiroshi INOKAWA  Yasuo TAKAHASHI  Jung-Bum CHOI  

     
    PAPER

      Vol:
    E95-C No:5
      Page(s):
    865-870

    We developed a flexible-logic-gate single-electron device (SED) in which logic functions can be selected by changing the voltage applied to the control gate. It consists of an array of nanodots with multiple inputs and multiple outputs. Since the gate electrodes couple capacitively to the many dots underneath, complicated characteristics depending on the combination of the gate voltages yield a selectable logic gate when some of the gate electrodes are used as control gates. One of the important issues is how to design the arrangement of nanodots and gate electrodes. In this study, we fabricated a Si nanodot array with two simple input gates and two output terminals, in which each gate was coupled to half of the nanodot array. Even though the device had a very simple input-gate arrangement and just one control gate, we could create a half-adder function through the use of current maps as functions of the input gate voltages. We found that the nanodots evenly coupled capacitively to both input gates played an important role in getting a basic set of logic functions. Moreover, these results guarantee that a more complicated input-gate structure, in which each gate evenly couples many nanodots, will yield more complicated functions.

  • Broadband Light Source Based on Four-Color Self-Assembled InAs Quantum Dot Ensembles Monolithically Grown in Selective Areas

    Nobuhiko OZAKI  Koichi TAKEUCHI  Shunsuke OHKOUCHI  Naoki IKEDA  Yoshimasa SUGIMOTO  Kiyoshi ASAKAWA  Richard A. HOGG  

     
    BRIEF PAPER

      Vol:
    E95-C No:2
      Page(s):
    247-250

    We developed advanced techniques for the growth of self-assembled quantum dots (QDs) for fabricating a broadband light source that can be applied to optical coherence tomography (OCT). Four QD ensembles and strain reducing layers (SRLs) were grown in selective areas on a wafer by the use of a 90° rotational metal mask. The SRL thickness was varied to achieve appropriate shifts in the peak wavelength of the QD emission spectrum of up to 120 nm. The four-color QD ensembles were expected to have a broad bandwidth of more than 160 nm due to the combination of excited state emissions when introduced in a current-induced broadband light source such as a superluminescent diode (SLD). Furthermore, a desired shape of the SLD spectrum can be obtained by controlling the injection current applied to each QD ensemble. The broadband and spectrum shape controlled light source is promising for high-resolution and low-noise OCT systems.

  • Nanophotonics Based on Semiconductor-Photonic Crystal/Quantum Dot and Metal-/Semiconductor-Plasmonics Open Access

    Kiyoshi ASAKAWA  Yoshimasa SUGIMOTO  Naoki IKEDA  Daiju TSUYA  Yasuo KOIDE  Yoshinori WATANABE  Nobuhiko OZAKI  Shunsuke OHKOUCHI  Tsuyoshi NOMURA  Daisuke INOUE  Takayuki MATSUI  Atsushi MIURA  Hisayoshi FUJIKAWA  Kazuo SATO  

     
    INVITED PAPER

      Vol:
    E95-C No:2
      Page(s):
    178-187

    This paper reviews our recent activities on nanophotonics based on a photonic crystal (PC)/quantum dot (QD)-combined structure for an all-optical device and a metal/semiconductor composite structure using surface plasmon (SP) and negative refractive index material (NIM). The former structure contributes to an ultrafast signal processing component by virtue of new PC design and QD selective-area-growth technologies, while the latter provides a new RGB color filter with a high precision and optical beam-steering device with a wide steering angle.

  • Proposal of High Performance 1.55 µm Quantum Dot Heterostructure Laser Using InN

    Md. Mottaleb HOSSAIN  Md. Abdullah-AL HUMAYUN  Md. Tanvir HASAN  Ashraful Ghani BHUIYAN  Akihiro HASHIMOTO  Akio YAMAMOTO  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E95-C No:2
      Page(s):
    255-261

    This paper reports on a theoretical study and modeling of a 1.55 µm quantum dot heterostructure laser using InN as a promising candidate for the first time. Details of design and theoretical analysis of probability distribution of the optical transition energy, threshold current density, modal gain, and differential quantum efficiency are presented considering a single layer of quantum dots. Dependence of threshold current density on the RMS value of quantum dot size fluctuations and the cavity length is studied. A low threshold current density of ∼51 Acm-2 is achieved at room temperature for a cavity length of 640 µm. An external differential efficiency of ∼65% and a modal gain of ∼12.5 cm-1 are obtained for the proposed structure. The results indicate that the InN based quantum dot laser is a promising one for the optical communication system.

  • Study on Collective Electron Motion in Si-Nano Dot Floating Gate MOS Capacitor

    Masakazu MURAGUCHI  Yoko SAKURAI  Yukihiro TAKADA  Shintaro NOMURA  Kenji SHIRAISHI  Mitsuhisa IKEDA  Katsunori MAKIHARA  Seiichi MIYAZAKI  Yasuteru SHIGETA  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    730-736

    We propose the collective electron tunneling model in the electron injection process between the Nano Dots (NDs) and the two-dimensional electron gas (2DEG). We report the collective motion of electrons between the 2DEG and the NDs based on the measurement of the Si-ND floating gate structure in the previous studies. However, the origin of this collective motion has not been revealed yet. We evaluate the proposed tunneling model by the model calculation. We reveal that our proposed model reproduces the collective motion of electrons. The insight obtained by our model shows new viewpoints for designing future nano-electronic devices.

  • Non-closure Properties of 1-Inkdot Nondeterministic Turing Machines and Alternating Turing Machines with Only Universal States Using Small Space

    Tsunehiro YOSHINAGA  Jianliang XU  Makoto SAKAMOTO  

     
    LETTER-Algorithms and Data Structures

      Vol:
    E93-A No:6
      Page(s):
    1148-1152

    This paper investigates the closure properties of 1-inkdot nondeterministic Turing machines and 1-inkdot alternating Turing machines with only universal states which have sublogarithmic space. We show for example that the classes of sets accepted by these Turing machines are not closed under length-preserving homomorphism, concatenation with regular set, Kleene closure, and complementation.

  • Importance of the Electronic State on the Electrode in Electron Tunneling Processes between the Electrode and the Quantum Dot

    Masakazu MURAGUCHI  Yukihiro TAKADA  Shintaro NOMURA  Tetsuo ENDOH  Kenji SHIRAISHI  

     
    PAPER-Emerging Devices

      Vol:
    E93-C No:5
      Page(s):
    563-568

    We have revealed that the electronic states in the electrodes give a significant influence to the electron transport in nano-electronic devices. We have theoretically investigated the time-evolution of electron transport from a two-dimensional electron gas (2DEG) to a quantum dot (QD), where 2DEG represents the electrode in the nano-electronic devices. We clearly showed that the coherent electron transport is remarkably modified depending on the initial electronic state in the 2DEG. The electron transport from the 2DEG to the QD is strongly enhanced, when the initial state of the electron in the 2DEG is localized below the QD. We have proposed that controlling the electronic state in the electrodes could realize a new concept device function without modifying the electrode structures; that achieves a new controllable state in future nano-electronic devices.

  • Random Telegraph Signals in Two-Dimensional Array of Si Quantum Dots

    Katsunori MAKIHARA  Mitsuhisa IKEDA  Akira KAWANAMI  Seiichi MIYAZAKI  

     
    PAPER-Emerging Devices

      Vol:
    E93-C No:5
      Page(s):
    569-572

    Silicon-quantum-dots (Si-QDs) with an areal density as high as 1012 cm - 2 were self-assembled on thermally-grown SiO2 by low pressure CVD using Si2H6, in which OH-terminated SiO2 surface prior to the Si CVD was exposed to GeH4 to create nucleation sites uniformly. After thermal oxidation of Si-QDs surface, two-dimensional electronic transport through the Si-QDs array was measured with co-planar Al electrodes evaporated on the array surface. Random telegraph signals were clearly observed at constant applied bias conditions in dark condition and under light irradiation at room temperature. The result indicates the charging and discharging of a dot adjacent to the percolation current path in the dots array.

  • A Simple Method to Measure MTF of Paper and Its Application for Dot Gain Analysis

    Masayuki UKISHIMA  Hitomi KANEKO  Toshiya NAKAGUCHI  Norimichi TSUMURA  Markku HAUTA-KASARI  Jussi PARKKINEN  Yoichi MIYAKE  

     
    PAPER-Printing

      Vol:
    E92-A No:12
      Page(s):
    3328-3335

    Image quality of halftone print is significantly influenced by optical characteristics of paper. Light scattering in paper produces optical dot gain, which has a significant influence on the tone and color reproductions of halftone print. The light scattering can be quantified by the Modulation Transfer Function (MTF) of paper. Several methods have been proposed to measure the MTF of paper. However, these methods have problems in efficiency or accuracy in the measurement. In this article, a new method is proposed to measure the MTF of paper efficiently and accurately, and the dot gain effect on halftone print is analyzed. The MTF is calculated from the ratio in spatial frequency domain between the responses of incident pencil light to paper and the perfect specular reflector. Since the spatial frequency characteristic of input pencil light can be obtained from the response of perfect specular reflector, it does not need to produce the input illuminant having "ideal" impulse characteristic. Our method is experimentally efficient since only two images need to be measured. Besides it can measure accurately since the data can be approximated by the conventional MTF model. Next, we predict the reflectance distribution of halftone print using the measured MTF in microscopy in order to analyze the dot gain effect since it can clearly be observed in halftone micro-structure. Finally, a simulation is carried out to remove the light scattering effect from the predicted image. Since the simulated image is not affected by the optical dot gain, it can be applied to analyze the real dot coverage.

  • Formation of Pd Nanodots Induced by Remote Hydrogen Plasma and Its Application to Floating Gate MOS Memories

    Kazuhiro SHIMANOE  Katsunori MAKIHARA  Mitsuhisa IKEDA  Seiichi MIYAZAKI  

     
    PAPER

      Vol:
    E92-C No:5
      Page(s):
    616-619

    We have studied the formation of Pd-nanodots on SiO2 from ultrathin Pd films being exposed to remote hydrogen plasma at room temperature, in which parameters such as the gas pressure and input power to generate H2 plasma and the Pd film thickness were selected to get some insights into surface migration of Pd atoms induced with atomic hydrogen irradiation and resultant agglomeration with cohesive action. The areal dot density was controlled in the range from 3.4 to 6.51011 cm - 2 while the dot size distribution was changed from 7 to 1.5 in average dot height with 40% variation in full-width at half maximum. We also fabricated MOS capacitors with a Pd-nanodots floating gate and confirmed the flat-band voltage shift in capacitance-voltage characteristic due to electron injection to and emission from the dots floating gate.

  • Poly(3,4-Ethylenedioxythiophene): Poly(Styrenesulfonate) (PEDOT:PSS) Films for the Microbolometer Applications

    Hyeok Jun SON  Il Woong KWON  Yong Soo LEE  Hee Chul LEE  

     
    PAPER

      Vol:
    E92-C No:5
      Page(s):
    702-707

    In this paper, Poly(3,4-ethylenedioxythiophene): Poly (Styrenesulfonate) (PEDOT:PSS) thin films for application in a bolometer, a type of uncooled infrared image sensor, are presented. In addition, the TCR and 1/f noise dependencies of PEDOT:PSS thin films on the thermal treatment conditions are demonstrated. It is also shown that an appropriate thermal treatment can suppress the 1/f noise of PEDOT:PSS thin films while maintaining the resistivity and TCR. A high TCR value over -4%/ (within 10 ohmcm) through chemical treatment is also presented. The results of this study show that PEDOT:PSS thin films have potential for use as a bolometric material.

  • Electrocatalytic Oxidation Properties of Ascorbic Acid at Poly(3,4-ethylenedioxythiophene) Films Studied by Electrochemical-Surface Plasmon Resonance Spectroscopy

    Akira BABA  Yohsuke SANO  Yasuo OHDAIRA  Kazunari SHINBO  Keizo KATO  Futao KANEKO  

     
    LETTER-Materials & Devices

      Vol:
    E91-C No:12
      Page(s):
    1881-1882

    In this report, we demonstrate electrocatalytic oxidation properties of ascorbic acid at poly(3,4-ethylenedioxythiophene) (PEDOT) thin films in view of their potential application for bio-sensing devices. PEDOT thin films were deposited on gold thin films by electropolymerization of EDOT monomer in acetonitrile solvent. In-situ electrochemical-surface plasmon resonance spectroscopy (EC-SPR) was used to detect both electrochemical and optical signals upon an injection of ascorbic acid.

  • High-Efficiency Phosphorescent and Fluorescent Pure-White Organic Light-Emitting Diodes by Incorporating Small Nano-Dot in Non-emissive Layer

    Jwo-Huei JOU  Wei-Ben WANG  Cheng-Chung CHEN  Ming-Hsuan WU  Mao-Feng HSU  Shih-Ming SHEN  Yu-Chiao CHUNG  Jing-Jong SHYUE  

     
    INVITED PAPER

      Vol:
    E91-C No:10
      Page(s):
    1532-1535

    High-efficiency pure-white organic light-emitting diodes (OLEDs) were fabricated using small polysilicic acid nanodot embedded polymeric hole-transporting layer. By incorporating the nanodot, the efficiency of a solution-processed phosphorescent white OLED was increased from 6.8 to 23.7 lm/W, an improvement of 250%. 17.1 lm/W was obtained while the same concept was applied on a mixed-host composed fluorescent white OLED.

  • Progress on Charge Distribution in Multiply-Stacked Si Quantum Dots/SiO2 Structure as Evaluated by AFM/KFM

    Katsunori MAKIHARA  Mitsuhisa IKEDA  Seiichiro HIGASHI  Seiichi MIYAZAKI  

     
    PAPER

      Vol:
    E91-C No:5
      Page(s):
    712-715

    Multiply-stacked structures of Si quantum dots (Si-QDs) in gate oxide are attracting much attention because of their potential importance to improve retention characteristics in a high density charge storage. In this work, we have fabricated 6-fold stacked Si-QDs with 2 nm-thick SiO2 interlayers, whose areal dot density and average dot size were 5.71011 cm-2 in each dot layer and 5 nm in height, and studied progress on electron distribution in 6-fold stacked Si-QDs with 2 nm-thick SiO2 interlayers from the measurements of temporal changes in the surface potential after electron charging and discharging locally at room temperature using an AFM/Kelvin probe technique in clean room air. First, by scanning an area of 22 µm2 with the AFM tip biased at +3 V with respect to the substrate in a tapping mode, the area was negatively charged due to electron injection from the substrate to the dot through the bottom tunnel oxide and subsequently, the central part of 100100 nm2 in the pre-charged area was scanned with the tip biased at -3 V to emit the electrons from the Si-QDs to the substrate. As a result, the negative charging level was markedly reduced in the central part in comparison to its peripheral region. And then, the surface potential of the negatively-charged peripheral region was decay monotonously with time as a result of progressive electron tunneling to the substrate. In contrast to this, the temporal change in the surface potential of the central part shows that the electron charging proceeds with time until the surface potential becomes almost the same as that in the peripheral region. This result can be interpreted in terms of lateral spreading of electrons stored in the Si-QDs layer due to the potential difference between the central part and its peripheral region more negatively charged.

  • Enhanced Characteristics of In0.5Ga0.5As Quantum Dot Infrared Photo Detector with Hydrogen Plasma Treatment

    Sung Ho HWANG  Jin Dong SONG  Won Jun CHOI  Jung Il LEE  

     
    PAPER

      Vol:
    E91-C No:5
      Page(s):
    699-702

    Device characteristics of In0.5Ga0.5As/GaAs quantum dot infrared detector (QDIP) have been enhanced with hydrogen plasma treatment. After the hydrogen (H) plasma treatment, the dark currents were noticeably decreased and photoluminescence (PL) intensity was increased by H-passivation of interfacial traps between quantum dots and GaAs and of non-radiative defect centers caused during QD growths. Photo response, which could not be observed in as-grown QDIP due to large dark currents which obscured the photocurrent signal, was measured successfully after H-treatment due to H-passivation.

  • Recent Progresses of Si-Based Photonics in Chinese Main Land

    Jinzhong YU  Qiming WANG  Buwen CHENG  Saowu CHEN  Yuhua ZUO  

     
    INVITED PAPER

      Vol:
    E91-C No:2
      Page(s):
    150-155

    Si-based photonic materials and devices, including SiGe/Si quantum structures, SOI and InGaAs bonded on Si, PL of Si nanocrystals, SOI photonic crystal filter, Si based RCE (Resonant Cavity Enhanced) photodiodes, SOI TO (thermai-optical) switch matrix were investigated in Institute of Semiconductors, Chinese Academy of Sciences. The main results in recent years are presented in the paper. The mechanism of PL from Si NCs embedded in SiO2 matrix was studied, a greater contribution of the interface state recombination (PL peak in 850~900 nm) is associated with larger Si NCs and higher interface state density. Ge dots with density of order of 1011 cm-2 were obtained by UHV/CVD growth and 193 nm excimer laser annealing. SOI photonic crystal filter with resonant wavelength of 1598 nm and Q factor of 1140 was designed and made. Si based hybrid InGaAs RCE PD with η of 34.4% and FWHM of 27 nm were achieved by MOCVD growth and bonding technology between InGaAs epitaxial and Si wafers. A 1616 SOI optical switch matrix were designed and made. A new current driving circuit was used to improve the response speed of a 44 SOI rearrangeable nonblocking TO switch matrix, rising and falling time is 970 and 750 ns, respectively.

  • Estimation of Photonic Couplings among Electric Multipoles in Quantum Dots for Nanometer Scale Devices

    Hideaki MATSUEDA  

     
    PAPER-Nonlinear Phenomena and Analysis

      Vol:
    E90-A No:10
      Page(s):
    2148-2153

    A comparison among the possible nonlinear photonic interactions for scalable nanometer networks and quantum gates as well as for coherence retention in solids is made theoretically, and then numerical plottings are given, on the basis of the dipole length estimated from our µ-PL (microphotoluminescence) spectra of GaAs/AlGaAs coupled quantum dots (QDs) having a pair of 0.3 meV splittings. Furthermore, prospective device concepts based on these nonlinear multipolar interactions are given.

  • Growth of Endothelial Cells on Surfaces Modified by a Plasma-Polymerized Coating

    Hitoshi MUGURUMA  Naoya MURATA  Naoto KAWASAKI  Shogo KURETOKO  Susumu KUDO  

     
    LETTER-Organic Molecular Electronics

      Vol:
    E90-C No:9
      Page(s):
    1844-1847

    Endothelial cell adhesion and growth were investigated on three types of surfaces with a plasma-polymerized coating (PPC): (1) the pristine surface of a hexamethyldisiloxane (HMDS) PPC (hydrophobic, electrically neutral surface); (2) an HMDS PPC surface with nitrogen-containing plasma treatment (hydrophilic, positively charged surface); and (3) an HMDS PPC surface treated with oxygen plasma (hydrophilic, negatively charged surface). Endothelial cells grew on surface (2) but not on surfaces (1) or (3). Next, endothelial cell adhesion and growth was investigated on a surface on which 80-µm squares were micro-patterned at 160-µm intervals in a mosaic composed of two different (cell-adhesive and non-cell-adhesive) regions. Cell growth on the patterned surfaces was different from that on non-patterned surfaces. PPC was shown to be a simple process for modulating cell adhesion to surfaces.

  • Single-Electron Logic Systems Based on a Graphical Representation of Digital Functions

    Yoshihito AMEMIYA  

     
    INVITED PAPER

      Vol:
    E89-C No:11
      Page(s):
    1504-1511

    This paper outlines the method of constructing single-electron logic circuits based on the binary decision diagram (BDD), a graphical representation of digital functions. The circuit consists of many unit devices, BDD devices, cascaded to build the tree of a BDD graph. Each BDD device corresponds to a node of the BDD graph and operates as a two-way switch for the transport of a single electron. Any combinatorial logic can be implemented using BDD circuits. Several subsystems for a single-electron processor have been constructed using semiconductor nano-process technology.

  • Quantum-Dot Cellular Automata Design Guideline

    Kyosun KIM  Kaijie WU  Ramesh KARRI  

     
    PAPER

      Vol:
    E89-A No:6
      Page(s):
    1607-1614

    Quantum-dot Cellular Automata (QCA) is attracting a lot of attentions due to its extremely small feature sizes and ultra low power consumption. Up to now several designs using QCA technology have been proposed. However, we found not all of the designs function properly. Further, no general design guidelines have been proposed so far. A straightforward extension of a simple functional design pattern may fail. This makes designing a large scale circuits using QCA technology an extremely time-consuming process. In this paper we show several critical vulnerabilities in the structures of primitive QCA gates and QCA interconnects, and propose a disciplinary guideline to prevent any additional plausible but malfunctioning QCA designs.

21-40hit(71hit)