The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] FILT(1579hit)

41-60hit(1579hit)

  • Anomaly Prediction for Wind Turbines Using an Autoencoder with Vibration Data Supported by Power-Curve Filtering

    Masaki TAKANASHI  Shu-ichi SATO  Kentaro INDO  Nozomu NISHIHARA  Hiroki HAYASHI  Toru SUZUKI  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/12/07
      Vol:
    E105-D No:3
      Page(s):
    732-735

    The prediction of the malfunction timing of wind turbines is essential for maintaining the high profitability of the wind power generation industry. Studies have been conducted on machine learning methods that use condition monitoring system data, such as vibration data, and supervisory control and data acquisition (SCADA) data to detect and predict anomalies in wind turbines automatically. Autoencoder-based techniques that use unsupervised learning where the anomaly pattern is unknown have attracted significant interest in the area of anomaly detection and prediction. In particular, vibration data are considered useful because they include the changes that occur in the early stages of a malfunction. However, when autoencoder-based techniques are applied for prediction purposes, in the training process it is difficult to distinguish the difference between operating and non-operating condition data, which leads to the degradation of the prediction performance. In this letter, we propose a method in which both vibration data and SCADA data are utilized to improve the prediction performance, namely, a method that uses a power curve composed of active power and wind speed. We evaluated the method's performance using vibration and SCADA data obtained from an actual wind farm.

  • A Spectral Analyzer Based on Dual Coprime DFT Filter Banks and Sub-Decimation

    Xueyan ZHANG  Libin QU  Zhangkai LUO  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/06/23
      Vol:
    E105-B No:1
      Page(s):
    11-20

    Coprime (pair of) DFT filter banks (coprime DFTFB), which process signals like a spectral analyzer in time domain, divides the power spectrum equally into MN bands by employing two DFT filter banks (DFTFBs) of size only M and N respectively, where M and N are coprime integers. With coprime DFTFB, frequencies in wide sense stationary (WSS) signals can be effectively estimated with a much lower sampling rates than the Nyquist rates. However, the imperfection of practical FIR filter and the correlation based detection mode give rise to two kinds of spurious peaks in power spectrum estimation, that greatly limit the application of coprime DFTFB. Through detailed analysis of the spurious peaks, this paper proposes a modified spectral analyzer based on dual coprime DFTFBs and sub-decimation, which not only depresses the spurious peaks, but also improves the frequency estimation accuracy. The mathematical principle proof of the proposed spectral analyzer is also provided. In discussion of simultaneous signals detection, an O-extended MN-band coprime DFTFB (OExt M-N coprime DFTFB) structure is naturally deduced, where M, N, and O are coprime with each other. The original MN-band coprime DFTFB (M-N coprime DFTFB) can be seen a special case of the OExt M-N coprime DFTFB with extending factor O equals ‘1’. In the numerical simulation section, BPSK signals with random carrier frequencies are employed to test the proposed spectral analyzer. The results of detection probability versus SNR curves through 1000 Monte Carlo experiments verify the effectiveness of the proposed spectrum analyzer.

  • Statistical-Mechanical Analysis of Adaptive Volterra Filter with the LMS Algorithm Open Access

    Kimiko MOTONAKA  Tomoya KOSEKI  Yoshinobu KAJIKAWA  Seiji MIYOSHI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/06/01
      Vol:
    E104-A No:12
      Page(s):
    1665-1674

    The Volterra filter is one of the digital filters that can describe nonlinearity. In this paper, we analyze the dynamic behaviors of an adaptive signal-processing system including the Volterra filter by a statistical-mechanical method. On the basis of the self-averaging property that holds when the tapped delay line is assumed to be infinitely long, we derive simultaneous differential equations in a deterministic and closed form, which describe the behaviors of macroscopic variables. We obtain the exact solution by solving the equations analytically. In addition, the validity of the theory derived is confirmed by comparison with numerical simulations.

  • Adaptive Normal State-Space Notch Digital Filters: Algorithm and Frequency-Estimation Bias Analysis

    Yoichi HINAMOTO  Shotaro NISHIMURA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/05/17
      Vol:
    E104-A No:11
      Page(s):
    1585-1592

    This paper investigates an adaptive notch digital filter that employs normal state-space realization of a single-frequency second-order IIR notch digital filter. An adaptive algorithm is developed to minimize the mean-squared output error of the filter iteratively. This algorithm is based on a simplified form of the gradient-decent method. Stability and frequency estimation bias are analyzed for the adaptive iterative algorithm. Finally, a numerical example is presented to demonstrate the validity and effectiveness of the proposed adaptive notch digital filter and the frequency-estimation bias analyzed for the adaptive iterative algorithm.

  • Constrained Design of FIR Filters with Sparse Coefficients

    Tatsuki ITASAKA  Ryo MATSUOKA  Masahiro OKUDA  

     
    PAPER

      Pubricized:
    2021/05/13
      Vol:
    E104-A No:11
      Page(s):
    1499-1508

    We propose an algorithm for the constrained design of FIR filters with sparse coefficients. In general filter design approaches, as the length of the filter increases, the number of multipliers used to construct the filter increases. This is a serious problem, especially in two-dimensional FIR filter designs. The FIR filter coefficients designed by the least-squares method with peak error constraint are optimal in the sense of least-squares within a given order, but not necessarily optimal in terms of constructing a filter that meets the design specification under the constraints on the number of coefficients. That is, a higher-order filter with several zero coefficients can construct a filter that meets the specification with a smaller number of multipliers. We propose a two-step approach to design constrained sparse FIR filters. Our method minimizes the number of non-zero coefficients while the frequency response of the filter that meets the design specification. It achieves better performance in terms of peak error than conventional constrained least-squares designs with the same or higher number of multipliers in both one-dimensional and two-dimensional filter designs.

  • S-to-X Band 360-Degree RF Phase Detector IC Consisting of Symmetrical Mixers and Tunable Low-Pass Filters

    Akihito HIRAI  Kazutomi MORI  Masaomi TSURU  Mitsuhiro SHIMOZAWA  

     
    PAPER

      Pubricized:
    2021/05/13
      Vol:
    E104-C No:10
      Page(s):
    559-567

    This paper demonstrates that a 360° radio-frequency phase detector consisting of a combination of symmetrical mixers and 45° phase shifters with tunable devices can achieve a low phase-detection error over a wide frequency range. It is shown that the phase detection error does not depend on the voltage gain of the 45° phase shifter. This allows the usage of tunable devices as 45° phase shifters for a wide frequency range with low phase-detection errors. The fabricated phase detector having tunable low-pass filters as the tunable device demonstrates phase detection errors lower than 2.0° rms in the frequency range from 3.0 GHz to 10.5 GHz.

  • Realization of Rectangular Frequency Characteristics by the Effects of a Low-Noise Amplifier and Flat Passband Bandpass Filter

    Tomohiro TSUKUSHI  Satoshi ONO  Koji WADA  

     
    PAPER

      Pubricized:
    2021/04/09
      Vol:
    E104-C No:10
      Page(s):
    568-575

    Realizing frequency rectangular characteristics using a planar circuit made of a normal conductor material such as a printed circuit board (PCB) is difficult. The reason is that the corners of the frequency response are rounded by the effect of the low unloaded quality factors of the resonators. Rectangular frequency characteristics are generally realized by a low-noise amplifier (LNA) with flat gain characteristics and a high-order bandpass filter (BPF) with resonators having high unloaded quality factors. Here, we use an LNA and a fourth-order flat passband BPF made of a PCB to realize the desired characteristics. We first calculate the signal and noise powers to confirm any effects from insertion loss caused by the BPF. Next, we explain the design and fabrication of an LNA, since no proper LNAs have been developed for this research. Finally, the rectangular frequency characteristics are shown by a circuit combining the fabricated LNA and the fabricated flat passband BPF. We show that rectangular frequency characteristics can be realized using a flat passband BPF technique.

  • Transmission Characteristics Control of 120 GHz-Band Bandstop Filter by Coupling Alignment-Free Lattice Pattern

    Akihiko HIRATA  Koichiro ITAKURA  Taiki HIGASHIMOTO  Yuta UEMURA  Tadao NAGATSUMA  Takashi TOMURA  Jiro HIROKAWA  Norihiko SEKINE  Issei WATANABE  Akifumi KASAMATSU  

     
    PAPER

      Pubricized:
    2021/04/08
      Vol:
    E104-C No:10
      Page(s):
    587-595

    In this paper, we present the transmission characteristics control of a 125 GHz-band split-ring resonator (SRR) bandstop filter by coupling an alignment-free lattice pattern. We demonstrate that the transmission characteristics of the SRR filter can be controlled by coupling the lattice pattern; however, the required accuracy of alignment between the SRR filter and lattice pattern was below 200 µm. Therefore, we designed an alignment-free lattice pattern whose unit cell size is different from that of the SRR unit cell. S21 of the SRR bandstop filter changes from -38.7 to -4.0 dB at 125 GHz by arranging the alignment-free lattice pattern in close proximity to the SRR stopband filter without alignment. A 10 Gbit/s data transmission can be achieved over a 125 GHz-band wireless link by setting the alignment-free lattice pattern substrate just above the SRR bandstop filter.

  • Rolling Guidance Filter as a Clustering Algorithm

    Takayuki HATTORI  Kohei INOUE  Kenji HARA  

     
    LETTER

      Pubricized:
    2021/05/31
      Vol:
    E104-D No:10
      Page(s):
    1576-1579

    We propose a generalization of the rolling guidance filter (RGF) to a similarity-based clustering (SBC) algorithm which can handle general vector data. The proposed RGF-based SBC algorithm makes the similarities between data clearer than the original similarity values computed from the original data. On the basis of the similarity values, we assign cluster labels to data by an SBC algorithm. Experimental results show that the proposed algorithm achieves better clustering result than the result by the naive application of the SBC algorithm to the original similarity values. Additionally, we study the convergence of a unimodal vector dataset to its mean vector.

  • Anomaly Prediction for Wind Turbines Using an Autoencoder Based on Power-Curve Filtering

    Masaki TAKANASHI  Shu-ichi SATO  Kentaro INDO  Nozomu NISHIHARA  Hiroto ICHIKAWA  Hirohisa WATANABE  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/06/07
      Vol:
    E104-D No:9
      Page(s):
    1506-1509

    Predicting the malfunction timing of wind turbines is essential for maintaining the high profitability of the wind power generation business. Machine learning methods have been studied using condition monitoring system data, such as vibration data, and supervisory control and data acquisition (SCADA) data, to detect and predict anomalies in wind turbines automatically. Autoencoder-based techniques have attracted significant interest in the detection or prediction of anomalies through unsupervised learning, in which the anomaly pattern is unknown. Although autoencoder-based techniques have been proven to detect anomalies effectively using relatively stable SCADA data, they perform poorly in the case of deteriorated SCADA data. In this letter, we propose a power-curve filtering method, which is a preprocessing technique used before the application of an autoencoder-based technique, to mitigate the dirtiness of SCADA data and improve the prediction performance of wind turbine degradation. We have evaluated its performance using SCADA data obtained from a real wind-farm.

  • A Narrowband Active Noise Control System with a Frequency Estimator

    Lei WANG  Kean CHEN  Jian XU  

     
    PAPER-Noise and Vibration

      Pubricized:
    2021/03/17
      Vol:
    E104-A No:9
      Page(s):
    1284-1292

    A narrowband active noise control (NANC) system is very effective for controlling low-frequency periodic noise. A frequency mismatch (FM) with the reference signal will degrade the performance or even cause the system to diverge. To deal with an FM and obtain an accurate reference signal, NANC systems often employ a frequency estimator. Combining an autoregressive predictive filter with a variable step size (VSS) all-pass-based lattice adaptive notch filter (ANF), a new frequency estimation method is proposed that does not require prior information of the primary signal, and the convergence characteristics are much improved. Simulation results show that the designed frequency estimator has a higher accuracy than the conventional algorithm. Finally, hardware experiments are carried out to verify the noise reduction effect.

  • Detection Algorithms for FBMC/OQAM Spatial Multiplexing Systems

    Kuei-Chiang LAI  Chi-Jen CHEN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/03/22
      Vol:
    E104-B No:9
      Page(s):
    1172-1187

    In this paper, we address the problem of detector design in severely frequency-selective channels for spatial multiplexing systems that adopt filter bank multicarrier based on offset quadrature amplitude modulation (FBMC/OQAM) as the communication waveforms. We consider decision feedback equalizers (DFEs) that use multiple feedback filters to jointly cancel the post-cursor components of inter-symbol interference, inter-antenna interference, and, in some configuration, inter-subchannel interference. By exploiting the special structures of the correlation matrix and the staggered property of the FBMC/OQAM signals, we obtain an efficient method of computing the DFE coefficients that requires a smaller number of multiplications than the linear equalizer (LE) and conventional DFE do. The simulation results show that the proposed detectors considerably outperform the LE and conventional DFE at moderate-to-high signal-to-noise ratios.

  • An Improved Method of LIME for a Low-Light Image Containing Bright Regions

    Seiichi KOJIMA  Noriaki SUETAKE  

     
    LETTER-Image

      Pubricized:
    2021/02/17
      Vol:
    E104-A No:8
      Page(s):
    1088-1092

    LIME is a method for low-light image enhancement. Though LIME significantly enhances the contrast in dark regions, the effect of contrast enhancement tends to be insufficient in bright regions. In this letter, we propose an improved method of LIME. In the proposed method, the contrast in bright regions are improved while maintaining the contrast enhancement effect in dark regions.

  • Improved Hybrid Feature Selection Framework

    Weizhi LIAO  Guanglei YE  Weijun YAN  Yaheng MA  Dongzhou ZUO  

     
    PAPER

      Pubricized:
    2021/05/12
      Vol:
    E104-D No:8
      Page(s):
    1266-1273

    An efficient Feature selection strategy is important in the dimension reduction of data. Extensive existing research efforts could be summarized into three classes: Filter method, Wrapper method, and Embedded method. In this work, we propose an integrated two-stage feature extraction method, referred to as FWS, which combines Filter and Wrapper method to efficiently extract important features in an innovative hybrid mode. FWS conducts the first level of selection to filter out non-related features using correlation analysis and the second level selection to find out the near-optimal sub set that capturing valuable discrete features by evaluating the performance of predictive model trained on such sub set. Compared with the technologies such as mRMR and Relief-F, FWS significantly improves the detection performance through an integrated optimization strategy.Results show the performance superiority of the proposed solution over several well-known methods for feature selection.

  • Collaborative Filtering Auto-Encoders for Technical Patent Recommending

    Wenlei BAI  Jun GUO  Xueqing ZHANG  Baoying LIU  Daguang GAN  

     
    PAPER

      Pubricized:
    2021/04/26
      Vol:
    E104-D No:8
      Page(s):
    1258-1265

    To find the exact items from the massive patent resources for users is a matter of great urgency. Although the recommender systems have shot this problem to a certain extent, there are still some challenging problems, such as tracking user interests and improving the recommendation quality when the rating matrix is extremely sparse. In this paper, we propose a novel method called Collaborative Filtering Auto-Encoder for the top-N recommendation. This method employs Auto-Encoders to extract the item's features, converts a high-dimensional sparse vector into a low-dimensional dense vector, and then uses the dense vector for similarity calculation. At the same time, to make the recommendation list closer to the user's recent interests, we divide the recommendation weight into time-based and recent similarity-based weights. In fact, the proposed method is an improved, item-based collaborative filtering model with more flexible components. Experimental results show that the method consistently outperforms state-of-the-art top-N recommendation methods by a significant margin on standard evaluation metrics.

  • Minimax Design of Sparse IIR Filters Using Sparse Linear Programming Open Access

    Masayoshi NAKAMOTO  Naoyuki AIKAWA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/02/15
      Vol:
    E104-A No:8
      Page(s):
    1006-1018

    Recent trends in designing filters involve development of sparse filters with coefficients that not only have real but also zero values. These sparse filters can achieve a high performance through optimizing the selection of the zero coefficients and computing the real (non-zero) coefficients. Designing an infinite impulse response (IIR) sparse filter is more challenging than designing a finite impulse response (FIR) sparse filter. Therefore, studies on the design of IIR sparse filters have been rare. In this study, we consider IIR filters whose coefficients involve zero value, called sparse IIR filter. First, we formulate the design problem as a linear programing problem without imposing any stability condition. Subsequently, we reformulate the design problem by altering the error function and prepare several possible denominator polynomials with stable poles. Finally, by incorporating these methods into successive thinning algorithms, we develop a new design algorithm for the filters. To demonstrate the effectiveness of the proposed method, its performance is compared with that of other existing methods.

  • Video Magnification under the Presence of Complex Background Motions

    Long ZHANG  Xuezhi YANG  

     
    LETTER-Computer Graphics

      Pubricized:
    2021/03/15
      Vol:
    E104-D No:6
      Page(s):
    909-914

    We propose a video magnification method for magnifying subtle color and motion changes under the presence of non-meaningful background motions. We use frequency variability to design a filter that passes only meaningful subtle changes and removes non-meaningful ones; our method obtains more impressive magnification results without artifacts than compared methods.

  • Kernel Weights for Equalizing Kernel-Wise Convergence Rates of Multikernel Adaptive Filtering

    Kwangjin JEONG  Masahiro YUKAWA  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2020/12/11
      Vol:
    E104-A No:6
      Page(s):
    927-939

    Multikernel adaptive filtering is an attractive nonlinear approach to online estimation/tracking tasks. Despite its potential advantages over its single-kernel counterpart, a use of inappropriately weighted kernels may result in a negligible performance gain. In this paper, we propose an efficient recursive kernel weighting technique for multikernel adaptive filtering to activate all the kernels. The proposed weights equalize the convergence rates of all the corresponding partial coefficient errors. The proposed weights are implemented via a certain metric design based on the weighting matrix. Numerical examples show, for synthetic and multiple real datasets, that the proposed technique exhibits a better performance than the manually-tuned kernel weights, and that it significantly outperforms the online multiple kernel regression algorithm.

  • Parallel Peak Cancellation Signal-Based PAPR Reduction Method Using Null Space in MIMO Channel for MIMO-OFDM Transmission Open Access

    Taku SUZUKI  Mikihito SUZUKI  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/11/20
      Vol:
    E104-B No:5
      Page(s):
    539-549

    This paper proposes a parallel peak cancellation (PC) process for the computational complexity-efficient algorithm called PC with a channel-null constraint (PCCNC) in the adaptive peak-to-average power ratio (PAPR) reduction method using the null space in a multiple-input multiple-output (MIMO) channel for MIMO-orthogonal frequency division multiplexing (OFDM) signals. By simultaneously adding multiple PC signals to the time-domain transmission signal vector, the required number of iterations of the iterative algorithm is effectively reduced along with the PAPR. We implement a constraint in which the PC signal is transmitted only to the null space in the MIMO channel by beamforming (BF). By doing so the data streams do not experience interference from the PC signal on the receiver side. Since the fast Fourier transform (FFT) and inverse FFT (IFFT) operations at each iteration are not required unlike the previous algorithm and thanks to the newly introduced parallel processing approach, the enhanced PCCNC algorithm reduces the required total computational complexity and number of iterations compared to the previous algorithms while achieving the same throughput-vs.-PAPR performance.

  • HAIF: A Hierarchical Attention-Based Model of Filtering Invalid Webpage

    Chaoran ZHOU  Jianping ZHAO  Tai MA  Xin ZHOU  

     
    PAPER

      Pubricized:
    2021/02/25
      Vol:
    E104-D No:5
      Page(s):
    659-668

    In Internet applications, when users search for information, the search engines invariably return some invalid webpages that do not contain valid information. These invalid webpages interfere with the users' access to useful information, affect the efficiency of users' information query and occupy Internet resources. Accurate and fast filtering of invalid webpages can purify the Internet environment and provide convenience for netizens. This paper proposes an invalid webpage filtering model (HAIF) based on deep learning and hierarchical attention mechanism. HAIF improves the semantic and sequence information representation of webpage text by concatenating lexical-level embeddings and paragraph-level embeddings. HAIF introduces hierarchical attention mechanism to optimize the extraction of text sequence features and webpage tag features. Among them, the local-level attention layer optimizes the local information in the plain text. By concatenating the input embeddings and the feature matrix after local-level attention calculation, it enriches the representation of information. The tag-level attention layer introduces webpage structural feature information on the attention calculation of different HTML tags, so that HAIF is better applicable to the Internet resource field. In order to evaluate the effectiveness of HAIF in filtering invalid pages, we conducted various experiments. Experimental results demonstrate that, compared with other baseline models, HAIF has improved to various degrees on various evaluation criteria.

41-60hit(1579hit)