The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] FILT(1579hit)

181-200hit(1579hit)

  • Feature Adaptive Correlation Tracking

    Yulong XU  Yang LI  Jiabao WANG  Zhuang MIAO  Hang LI  Yafei ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/11/28
      Vol:
    E100-D No:3
      Page(s):
    594-597

    Feature extractor plays an important role in visual tracking, but most state-of-the-art methods employ the same feature representation in all scenes. Taking into account the diverseness, a tracker should choose different features according to the videos. In this work, we propose a novel feature adaptive correlation tracker, which decomposes the tracking task into translation and scale estimation. According to the luminance of the target, our approach automatically selects either hierarchical convolutional features or histogram of oriented gradient features in translation for varied scenarios. Furthermore, we employ a discriminative correlation filter to handle scale variations. Extensive experiments are performed on a large-scale benchmark challenging dataset. And the results show that the proposed algorithm outperforms state-of-the-art trackers in accuracy and robustness.

  • Prototype of Multi-Channel High-Tc SQUID Metallic Contaminant Detector for Large Sized Packaged Food Open Access

    Saburo TANAKA  Takeyoshi OHTANI  Hans-Joachim KRAUSE  

     
    INVITED PAPER

      Vol:
    E100-C No:3
      Page(s):
    269-273

    We report on the fabrication of a magnetic metallic contaminant detector using multi-channel high-Tc RF-SQUIDs (superconducting quantum interference devices) for large packaged food. For food safety finding small metallic contaminants is an important issue for a food manufacturer. Hence, a detection method for small sized contaminants is required. Some detection systems for food inspection using high-Tc SQUIDs have been reported to date. The system described here is different from the previous systems in its permitted size for inspection, being larger at 150mm in height × 300mm in width. For inspection of large sized food packages, improvement of the signal to noise ratio (SNR) is an important issue because the signal intensity is inversely proportional to the cube of the distance between the SQUID sensor and the object. Therefore a digital filter was introduced and its parameters were optimized. As a result, a steel ball as small as 0.5mm in diameter at a stand-off distance of 167mm was successfully detected with more than SNR = 3.3.

  • A Fully-Synthesizable 10.06Gbps 16.1mW Injection-Locked CDR in 28nm FDSOI

    Aravind THARAYIL NARAYANAN  Wei DENG  Dongsheng YANG  Rui WU  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E100-C No:3
      Page(s):
    259-267

    An all-digital fully-synthesizable PVT-tolerant clock data recovery (CDR) architecture for wireline chip-to-chip interconnects is presented. The proposed architecture enables the co-synthesis of the CDR with the digital core. By eliminating the resource hungry manual layout and interfacing steps, which are necessary for conventional CDR topologies, the design process and the time-to-market can be drastically improved. Besides, the proposed CDR architecture enables the re-usability of majority of the sub-systems which enables easy migration to different process nodes. The proposed CDR is also equipped with a self-calibration scheme for ensuring tolerence over PVT. The proposed fully-syntehsizable CDR was implemented in 28nm FDSOI. The system achieves a maximum data rate of 10.06Gbps while consuming a power of 16.1mW from a 1V power supply.

  • VANET-Assisted Cooperative Vehicle Mutual Positioning: Feasibility Study

    Ali Ufuk PEKER  Tankut ACARMAN  

     
    PAPER

      Vol:
    E100-A No:2
      Page(s):
    448-456

    This paper presents the set of procedures to blend GNSS and V2V communication to improve the performance of the stand-alone on-board GNSS receiver and to assure mutual positioning with a bounded error. Particle filter algorithm is applied to enhance mutual positioning of vehicles, and it fuses the information provided by the GNSS receiver, wireless measurements in vehicular environments, odometer, and digital road map data including reachability and zone probabilities. Measurement-based statistical model of relative distance as a function of Time-of-Arrival is experimentally obtained. The number of collaborative vehicles to the mutual positioning procedure is investigated in terms of positioning accuracy and network performance through realistic simulation studies, and the proposed mutual positioning procedure is experimentally evaluated by a fleet of five IEEE 802.11p radio modem equipped vehicles. Collaboration in a VANET improves availability of position measurement and its accuracy up to 40% in comparison with respect to the stand-alone GNSS receiver.

  • Power Line Noise Reduction for Bio-Sensing Applications Using N-Path Notch Filter

    Nicodimus RETDIAN  Takeshi SHIMA  

     
    LETTER

      Vol:
    E100-A No:2
      Page(s):
    541-544

    Power line noise is one of critical problems in bio-sensing. Various approaches utilizing both analog and digital techniques has been proposed. However, these approaches need active circuits with a wide dynamic range. N-path notch filters which implementable using passive components can be a promising solution to this problem. However, the notch depth of a conventional N-path notch filter is limited by the number of path. A new N-path notch filter with additional S/H circuit is proposed. Simulation results show that the proposed topology improves the notch depth by 43dB.

  • Adaptive Cancelling for Frequency-Fluctuating Periodic Interference

    Yusuke MATSUBARA  Naohiro TODA  

     
    PAPER-Biological Engineering

      Pubricized:
    2016/11/18
      Vol:
    E100-D No:2
      Page(s):
    359-366

    Periodic interference frequently affects the measurement of small signals and causes problems in clinical diagnostics. Adaptive filters can be used as potential tools for cancelling such interference. However, when the interference has a frequency fluctuation, the ideal adaptive-filter coefficients for cancelling the interference also fluctuate. When the adaptation property of the algorithm is slow compared with the frequency fluctuation, the interference-cancelling performance is degraded. However, if the adaptation is too quick, the performance is degraded owing to the target signal. To overcome this problem, we propose an adaptive filter that suppresses the fluctuation of the ideal coefficients by utilizing a $ rac{pi}{2}$ phase-delay device. This method assumes a frequency response that characterizes the transmission path from the interference source to the main input signal to be sufficiently smooth. In the numerical examples, the proposed method exhibits good performance in the presence of a frequency fluctuation when the forgetting factor is large. Moreover, we show that the proposed method reduces the calculation cost.

  • Analysis of Pulse Reflection Responses from Periodic Perfect Conductor in Two Dispersion Media

    Ryosuke OZAKI  Tsuneki YAMASAKI  

     
    BRIEF PAPER

      Vol:
    E100-C No:1
      Page(s):
    80-83

    In this paper, a periodic perfect conductor is used to investigate the solution for the metallic scatterer problem in soil. We analyzed the pulse reflection responses from the periodic perfect conductor in two dispersion media by varying the parameters for the permittivity properties of the complex dielectric constants, and also investigated the influence of both the dielectric and conductor using a combination of the fast inversion Laplace transform (FILT) method and the point matching method (PMM). In addition, we verified the accuracy of the present method with exact solutions for the transient scattering problem for a perfect conductor plate in the dispersion media.

  • Combining Color Features for Real-Time Correlation Tracking

    Yulong XU  Zhuang MIAO  Jiabao WANG  Yang LI  Hang LI  Yafei ZHANG  Weiguang XU  Zhisong PAN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/10/04
      Vol:
    E100-D No:1
      Page(s):
    225-228

    Correlation filter-based approaches achieve competitive results in visual tracking, but the traditional correlation tracking methods failed in mining the color information of the videos. To address this issue, we propose a novel tracker combined with color features in a correlation filter framework, which extracts not only gray but also color information as the feature maps to compute the maximum response location via multi-channel correlation filters. In particular, we modify the label function of the conventional classifier to improve positioning accuracy and employ a discriminative correlation filter to handle scale variations. Experiments are performed on 35 challenging benchmark color sequences. And the results clearly show that our method outperforms state-of-the-art tracking approaches while operating in real-time.

  • Online Model-Selection and Learning for Nonlinear Estimation Based on Multikernel Adaptive Filtering

    Osamu TODA  Masahiro YUKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:1
      Page(s):
    236-250

    We study a use of Gaussian kernels with a wide range of scales for nonlinear function estimation. The estimation task can then be split into two sub-tasks: (i) model selection and (ii) learning (parameter estimation) under the selected model. We propose a fully-adaptive and all-in-one scheme that jointly carries out the two sub-tasks based on the multikernel adaptive filtering framework. The task is cast as an asymptotic minimization problem of an instantaneous fidelity function penalized by two types of block l1-norm regularizers. Those regularizers enhance the sparsity of the solution in two different block structures, leading to efficient model selection and dictionary refinement. The adaptive generalized forward-backward splitting method is derived to deal with the asymptotic minimization problem. Numerical examples show that the scheme achieves the model selection and learning simultaneously, and demonstrate its striking advantages over the multiple kernel learning (MKL) method called SimpleMKL.

  • Pedestrian Detection by Template Matching Using Gabor Filter Bank on 24GHz UWB Radar

    Kota IWANAGA  Keiji JIMI  Isamu MATSUNAMI  

     
    LETTER

      Vol:
    E100-A No:1
      Page(s):
    232-235

    Case studies have reported that pedestrian detection methods using vehicle radar are not complete systems because each system has specific limitations at the cost of the calculating amounts, the system complexity or the range resolution. In this letter, we proposed a novel pedestrian detection method by template matching using Gabor filter bank, which was evaluated based on the data observed by 24GHz UWB radar.

  • Prefiltering and Postfiltering Based on Global Motion Compensation for Improving Coding Efficiency in H.264 and HEVC Codecs

    Ho Hyeong RYU  Kwang Yeon CHOI  Byung Cheol SONG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2016/10/07
      Vol:
    E100-D No:1
      Page(s):
    160-165

    In this paper, we propose a filtering approach based on global motion estimation (GME) and global motion compensation (GMC) for pre- and postprocessing of video codecs. For preprocessing a video codec, group of pictures (GOP), which is a basic unit for GMC, and reference frames are first defined for an input video sequence. Next, GME and GMC are sequentially performed for every frame in each GOP. Finally, a block-based adaptive temporal filter is applied between the GMC frames before video encoding. For postprocessing a video codec at the decoder end, every decoded frame is inversely motion-compensated using the transmitted global motion information. The holes generated during inverse motion compensation can be filled with the reference frames. The experimental results show that the proposed algorithm provides higher Bjontegaard-delta peak signal-to-noise ratios (BD-PSNRs) of 0.63 and 0.57 dB on an average compared with conventional H.264 and HEVC platforms, respectively.

  • Digital Multiple Notch Filter Design with Nelder-Mead Simplex Method

    Qiusheng WANG  Xiaolan GU  Yingyi LIU  Haiwen YUAN  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:1
      Page(s):
    259-265

    Multiple notch filters are used to suppress narrow-band or sinusoidal interferences in digital signals. In this paper, we propose a novel optimization design technique of an infinite impulse response (IIR) multiple notch filter. It is based on the Nelder-Mead simplex method. Firstly, the system function of the desired notch filter is constructed to form the objective function of the optimization technique. Secondly, the design parameters of the desired notch filter are optimized by Nelder-Mead simplex method. A weight function is also introduced to improve amplitude response of the notch filter. Thirdly, the convergence and amplitude response of the proposed technique are compared with other Nelder-Mead based design methods and the cascade-based design method. Finally, the practicability of the proposed notch filter design technique is demonstrated by some practical applications.

  • LigeroAV: A Light-Weight, Signature-Based Antivirus for Mobile Environment

    Jaehwan LEE  Min Jae JO  Ji Sun SHIN  

     
    LETTER-Information Network

      Pubricized:
    2016/09/12
      Vol:
    E99-D No:12
      Page(s):
    3185-3187

    Current signature-based antivirus solutions have three limitations such as the large volume of signature database, privacy preservation, and computation overheads of signature matching. In this paper, we propose LigeroAV, a light-weight, performance-enhanced antivirus, suitable for pervasive environments such as mobile phones. LigeroAV focuses on detecting MD5 signatures which are more than 90% of signatures. LigeroAV offloads matching computation in the cloud server with up-to-dated signature database while preserving privacy level using the Bloom filter.

  • Bi-Direction Interaural Matching Filter and Decision Weighting Fusion for Sound Source Localization in Noisy Environments

    Hong LIU  Mengdi YUE  Jie ZHANG  

     
    LETTER-Speech and Hearing

      Pubricized:
    2016/09/12
      Vol:
    E99-D No:12
      Page(s):
    3192-3196

    Sound source localization is an essential technique in many applications, e.g., speech enhancement, speech capturing and human-robot interaction. However, the performance of traditional methods degrades in noisy or reverberant environments, and it is sensitive to the spatial location of sound source. To solve these problems, we propose a sound source localization framework based on bi-direction interaural matching filter (IMF) and decision weighting fusion. Firstly, bi-directional IMF is put forward to describe the difference between binaural signals in forward and backward directions, respectively. Then, a hybrid interaural matching filter (HIMF), which is obtained by the bi-direction IMF through decision weighting fusion, is used to alleviate the affection of sound locations on sound source localization. Finally, the cosine similarity between the HIMFs computed from the binaural audio and transfer functions is employed to measure the probability of the source location. Constructing the similarity for all the spatial directions as a matrix, we can determine the source location by Maximum A Posteriori (MAP) estimation. Compared with several state-of-the-art methods, experimental results indicate that HIMF is more robust in noisy environments.

  • Personalized Web Page Recommendation Based on Preference Footprint to Browsed Pages

    Kenta SERIZAWA  Sayaka KAMEI  Syuhei HAYASHI  Satoshi FUJITA  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2016/08/08
      Vol:
    E99-D No:11
      Page(s):
    2705-2715

    In this paper, a new scheme for personalized web page recommendation using multi-user search engine query information is proposed. Our contribution is a scheme that improves the accuracy of personalization for various types of contents (e.g., documents, images and music) without increasing user burden. The proposed scheme combines “preference footprints” for browsed pages with collaborative filtering. We acquire user interest using words that are relevant to queries submitted by users, attach all user interests to a page as a footprint when it is browsed, and evaluate the relevance of web pages in relation to words in footprints. The performance of the scheme is evaluated experimentally. The results indicate that the proposed scheme improves the precision and recall of previous schemes by 1%-24% and 80%-107%, respectively.

  • Improving Performance of Heuristic Algorithms by Lebesgue Spectrum Filter Open Access

    Mikio HASEGAWA  

     
    INVITED PAPER

      Vol:
    E99-B No:11
      Page(s):
    2256-2262

    The previous researches on the chaotic CDMA have theoretically derived the chaotic sequences having the minimum asynchronous cross-correlation. To minimize the asynchronous cross-correlation, autocorrelation of each sequence have to be C(τ)≈C×rτ, r=-2+√3, dumped oscillation with increase of the lag τ. There are several methods to generate such sequences, using a chaotic map, using the Lebesgue spectrum filter (LSF) and so on. In this paper, such lowest cross-correlation found in the chaotic CDMA researches is applied to solution search algorithms for combinatorial optimization problems. In combinatorial optimization, effectiveness of the chaotic search has already been clarified. First, an importance of chaos and autocorrelation with dumped oscillation for combinatorial optimization is shown. Next, in order to realize ideal solution search, the LSF is applied to the Hopfield-Tank neural network, the 2-opt method and the 2-exchange method. Effectiveness of the LSF is clarified even for the large problems for the traveling salesman problems and the quadratic assignment problems.

  • IIR Filter Design Using Multi-Swarm PSO Based on Particle Reallocation Strategy

    Haruna AIMI  Kenji SUYAMA  

     
    PAPER-Digital Signal Processing

      Vol:
    E99-A No:11
      Page(s):
    1947-1954

    In this paper, we study a novel method to avoid a local minimum stagnation in the design problem of IIR (Infinite Impulse Response) filters using PSO (Particle Swarm Optimization). Although PSO is appropriate to solve nonlinear optimization problems, it is reported that a local minimum stagnation occurs due to a strong intensification of particles during the search. Then, multi-swarm PSO based on the particle reallocation strategy is proposed to avoid the local minimum stagnation. In this method, a reallocation space is determined by using some global bests. In this paper, the relationship between the number of swarms and the best value of design error is shown and the effectiveness of the proposed method is shown through several design examples.

  • Hybrid TOA/RSSI-Based Wireless Capsule Endoscope Localization with Relative Permittivity Estimation

    Takahiro ITO  Daisuke ANZAI  Jianqing WANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:11
      Page(s):
    2442-2449

    When using a wireless capsule endoscope (WCE), it is important to know WCE location. In this paper, we focus on a time of arrival (TOA)-based localization technique, as it has better location estimation performance than other radio frequency-based techniques. However, the propagation speed of signals transmitted from inside of a human body varies depending on which biological tissues they pass through. For this reason, almost all of conventional TOA-based methods have to obtain the relative permittivity of the passed biological tissues or the propagation speed beforehand through another measurement system, i.e., magnetic resonance imaging (MRI) or computational tomography (CT). To avoid such troublesome pre-measurement, we propose a hybrid TOA/received signal strength indicator (RSSI)-based method, which can simultaneously estimate the WCE location and the averaged relative permittivity of the human body. First, we derive the principle of RSSI-based relative permittivity estimation from an finite difference time domain (FDTD) simulation. Second, we combine the TOA-based localization and the proposed RSSI-based relative permittivity estimation, and add them to the particle filter tracking technique. Finally, we perform computer simulations to evaluate the estimation accuracy of the proposed method. The simulation results show that the proposed method can accomplish good localization performance, 1.3mm, without pre-measurement of the human body structure information.

  • A Fully Canonical Bandpass Filter Design Using Microstrip Transversal Resonator Array Configuration

    Masataka OHIRA  Toshiki KATO  Zhewang MA  

     
    PAPER

      Vol:
    E99-C No:10
      Page(s):
    1122-1129

    This paper proposes a new and simple microstrip bandpass filter structure for the design of a fully canonical transversal array filter. The filter is constructed by the parallel arrangement of microstrip even- and odd-mode half-wavelength resonators. In this filter, transmission zeros (TZs) are not produced by cross couplings used in conventional filter designs, but by an intrinsic negative coupling of the odd-mode resonators having open ends with respect to the even-mode resonators with shorted ends. Thus, the control of the resonant frequency and the external Q factor of each resonator makes it possible to form both a specified passband and TZs. As an example, a fully canonical bandpass filter with 2-GHz center frequency, 6% bandwidth, and four TZs is synthesized with a coupling-matrix optimization, and its structural parameters are designed. The designed filter achieves a rapid roll-off and low-loss passband response, which can be confirmed numerically and experimentally.

  • A Wideband Asymmetric Digital Predistortion Architecture for 60 GHz Short Range Wireless Transmitters

    Kenji MIYANAGA  Masashi KOBAYASHI  Noriaki SAITO  Naganori SHIRAKATA  Koji TAKINAMI  

     
    PAPER

      Vol:
    E99-C No:10
      Page(s):
    1190-1199

    This paper presents a wideband digital predistortion (DPD) architecture suitable for wideband wireless systems, such as IEEE 802.11ad/WiGig, where low oversampling ratio of the digital-to-analog converter (DAC) is a bottleneck for available linearization bandwidth. In order to overcome the bandwidth limitation in the conventional DPD, the proposed DPD introduces a complex coefficient filter in the DPD signal processing, which enables it to achieve asymmetric linearization. This approach effectively suppresses one side of adjacent channel leakages with twice the bandwidth as compared to the conventional DPD. The concept is verified through system simulation and measurements. Using a scaled model of a 2 GHz RF carrier frequency, the measurement shows a 4.2 dB advantage over the conventional DPD in terms of adjacent channel leakage.

181-200hit(1579hit)