The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] FILT(1579hit)

81-100hit(1579hit)

  • Improvement of the Quality of Visual Secret Sharing Schemes with Constraints on the Usage of Shares

    Mariko FUJII  Tomoharu SHIBUYA  

     
    PAPER

      Pubricized:
    2019/10/07
      Vol:
    E103-D No:1
      Page(s):
    11-24

    (k,n)-visual secret sharing scheme ((k,n)-VSSS) is a method to divide a secret image into n images called shares that enable us to restore the original image by only stacking at least k of them without any complicated computations. In this paper, we consider (2,2)-VSSS to share two secret images at the same time only by two shares, and investigate the methods to improve the quality of decoded images. More precisely, we consider (2,2)-VSSS in which the first secret image is decoded by stacking those two shares in the usual way, while the second one is done by stacking those two shares in the way that one of them is used reversibly. Since the shares must have some subpixels that inconsistently correspond to pixels of the secret images, the decoded pixels do not agree with the corresponding pixels of the secret images, which causes serious degradation of the quality of decoded images. To reduce such degradation, we propose several methods to construct shares that utilize 8-neighbor Laplacian filter and halftoning. Then we show that the proposed methods can effectively improve the quality of decoded images. Moreover, we demonstrate that the proposed methods can be naturally extended to (2,2)-VSSS for RGB images.

  • Blob Detection Based on Soft Morphological Filter

    Weiqing TONG  Haisheng LI  Guoyue CHEN  

     
    PAPER-Pattern Recognition

      Pubricized:
    2019/10/02
      Vol:
    E103-D No:1
      Page(s):
    152-162

    Blob detection is an important part of computer vision and a special case of region detection with important applications in the image analysis. In this paper, the dilation operator in standard mathematical morphology is firstly extended to the order dilation operator of soft morphology, three soft morphological filters are designed by using the operator, and a novel blob detection algorithm called SMBD is proposed on that basis. SMBD had been proven to have better performance of anti-noise and blob shape detection than similar blob filters based on mathematical morphology like Quoit and N-Quoit in terms of theoretical and experimental aspects. Additionally, SMBD was also compared to LoG and DoH in different classes, which are the most commonly used blob detector, and SMBD also achieved significantly great results.

  • Representative Spatial Selection and Temporal Combination for 60fps Real-Time 3D Tracking of Twelve Volleyball Players on GPU

    Xina CHENG  Yiming ZHAO  Takeshi IKENAGA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1882-1890

    Real-time 3D players tracking plays an important role in sports analysis, especially for the live services of sports broadcasting, which have a strict limitation on processing time. For these kinds of applications, 3D trajectories of players contribute to high-level game analysis such as tactic analysis and commercial applications such as TV contents. Thus real-time implementation for 3D players tracking is expected. In order to achieve real-time for 60fps videos with high accuracy, (that means the processing time should be less than 16.67ms per frame), the factors that limit the processing time of target algorithm include: 1) Large image area of each player. 2) Repeated processing of multiple players in multiple views. 3) Complex calculation of observation algorithm. To deal with the above challenges, this paper proposes a representative spatial selection and temporal combination based real-time implementation for multi-view volleyball players tracking on the GPU device. First, the representative spatial pixel selection, which detects the pixels that mostly represent one image region to scale down the image spatially, reduces the number of processing pixels. Second, the representative temporal likelihood combination shares observation calculation by using the temporal correlation between images so that the times of complex calculation is reduced. The experiments are based on videos of the Final and Semi-Final Game of 2014 Japan Inter High School Games of Men's Volleyball in Tokyo Metropolitan Gymnasium. On the GPU device GeForce GTX 1080Ti, the tracking system achieves real-time on 60fps videos and keeps the tracking accuracy higher than 97%.

  • New Sub-Band Adaptive Volterra Filter for Identification of Loudspeaker

    Satoshi KINOSHITA  Yoshinobu KAJIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:12
      Page(s):
    1946-1955

    Adaptive Volterra filters (AVFs) are usually used to identify nonlinear systems, such as loudspeaker systems, and ordinary adaptive algorithms can be used to update the filter coefficients of AVFs. However, AVFs require huge computational complexity even if the order of the AVF is constrained to the second order. Improving calculation efficiency is therefore an important issue for the real-time implementation of AVFs. In this paper, we propose a novel sub-band AVF with high calculation efficiency for second-order AVFs. The proposed sub-band AVF consists of four parts: input signal transformation for a single sub-band AVF, tap length determination to improve calculation efficiency, switching the number of sub-bands while maintaining the estimation accuracy, and an automatic search for an appropriate number of sub-bands. The proposed sub-band AVF can improve calculation efficiency for which the dominant nonlinear components are concentrated in any frequency band, such as loudspeakers. A simulation result demonstrates that the proposed sub-band AVF can realize higher estimation accuracy than conventional efficient AVFs.

  • A Spectral Clustering Based Filter-Level Pruning Method for Convolutional Neural Networks

    Lianqiang LI  Jie ZHU  Ming-Ting SUN  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/09/17
      Vol:
    E102-D No:12
      Page(s):
    2624-2627

    Convolutional Neural Networks (CNNs) usually have millions or even billions of parameters, which make them hard to be deployed into mobile devices. In this work, we present a novel filter-level pruning method to alleviate this issue. More concretely, we first construct an undirected fully connected graph to represent a pre-trained CNN model. Then, we employ the spectral clustering algorithm to divide the graph into some subgraphs, which is equivalent to clustering the similar filters of the CNN into the same groups. After gaining the grouping relationships among the filters, we finally keep one filter for one group and retrain the pruned model. Compared with previous pruning methods that identify the redundant filters by heuristic ways, the proposed method can select the pruning candidates more reasonably and precisely. Experimental results also show that our proposed pruning method has significant improvements over the state-of-the-arts.

  • Acceleration Using Upper and Lower Smoothing Filters for Generating Oil-Film-Like Images

    Toru HIRAOKA  Kiichi URAHAMA  

     
    LETTER-Computer Graphics

      Pubricized:
    2019/09/10
      Vol:
    E102-D No:12
      Page(s):
    2642-2645

    A non-photorealistic rendering method has been proposed for generating oil-film-like images from photographic images by bilateral infra-envelope filter. The conventional method has a disadvantage that it takes much time to process. We propose a method for generating oil-film-like images that can be processed faster than the conventional method. The proposed method uses an iterative process with upper and lower smoothing filters. To verify the effectiveness of the proposed method, we conduct experiments using Lenna image. As a result of the experiments, we show that the proposed method can process faster than the conventional method.

  • Cauchy Aperture and Perfect Reconstruction Filters for Extending Depth-of-Field from Focal Stack Open Access

    Akira KUBOTA  Kazuya KODAMA  Asami ITO  

     
    PAPER

      Pubricized:
    2019/08/16
      Vol:
    E102-D No:11
      Page(s):
    2093-2100

    A pupil function of aperture in image capturing systems is theoretically derived such that one can perfectly reconstruct all-in-focus image through linear filtering of the focal stack. The perfect reconstruction filters are also designed based on the derived pupil function. The designed filters are space-invariant; hence the presented method does not require region segmentation. Simulation results using synthetic scenes shows effectiveness of the derived pupil function and the filters.

  • A New Formula to Compute the NLMS Algorithm at a Computational Complexity of O(2N)

    Kiyoshi NISHIYAMA  Masahiro SUNOHARA  Nobuhiko HIRUMA  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1545-1549

    The least mean squares (LMS) algorithm has been widely used for adaptive filtering because of easily implementing at a computational complexity of O(2N) where N is the number of taps. The drawback of the LMS algorithm is that its performance is sensitive to the scaling of the input. The normalized LMS (NLMS) algorithm solves this problem on the LMS algorithm by normalizing with the sliding-window power of the input; however, this normalization increases the computational cost to O(3N) per iteration. In this work, we derive a new formula to strictly perform the NLMS algorithm at a computational complexity of O(2N), that is referred to as the C-NLMS algorithm. The derivation of the C-NLMS algorithm uses the H∞ framework presented previously by one of the authors for creating a unified view of adaptive filtering algorithms. The validity of the C-NLMS algorithm is verified using simulations.

  • Weighted Minimization of Roundoff Noise and Pole Sensitivity Subject to l2-Scaling Constraints for State-Space Digital Filters

    Yoichi HINAMOTO  Akimitsu DOI  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1473-1480

    This paper deals with the problem of minimizing roundoff noise and pole sensitivity simultaneously subject to l2-scaling constraints for state-space digital filters. A novel measure for evaluating roundoff noise and pole sensitivity is proposed, and an efficient technique for minimizing this measure by jointly optimizing state-space realization and error feedback is explored, namely, the constrained optimization problem at hand is converted into an unconstrained problem and then the resultant problem is solved by employing a quasi-Newton algorithm. A numerical example is presented to demonstrate the validity and effectiveness of the proposed technique.

  • Prediction-Based Scale Adaptive Correlation Filter Tracker

    Zuopeng ZHAO  Hongda ZHANG  Yi LIU  Nana ZHOU  Han ZHENG  Shanyi SUN  Xiaoman LI  Sili XIA  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/07/30
      Vol:
    E102-D No:11
      Page(s):
    2267-2271

    Although correlation filter-based trackers have demonstrated excellent performance for visual object tracking, there remain several challenges to be addressed. In this work, we propose a novel tracker based on the correlation filter framework. Traditional trackers face difficulty in accurately adapting to changes in the scale of the target when the target moves quickly. To address this, we suggest a scale adaptive scheme based on prediction scales. We also incorporate a speed-based adaptive model update method to further improve overall tracking performance. Experiments with samples from the OTB100 and KITTI datasets demonstrate that our method outperforms existing state-of-the-art tracking algorithms in fast motion scenes.

  • LGCN: Learnable Gabor Convolution Network for Human Gender Recognition in the Wild Open Access

    Peng CHEN  Weijun LI  Linjun SUN  Xin NING  Lina YU  Liping ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/06/13
      Vol:
    E102-D No:10
      Page(s):
    2067-2071

    Human gender recognition in the wild is a challenging task due to complex face variations, such as poses, lighting, occlusions, etc. In this letter, learnable Gabor convolutional network (LGCN), a new neural network computing framework for gender recognition was proposed. In LGCN, a learnable Gabor filter (LGF) is introduced and combined with the convolutional neural network (CNN). Specifically, the proposed framework is constructed by replacing some first layer convolutional kernels of a standard CNN with LGFs. Here, LGFs learn intrinsic parameters by using standard back propagation method, so that the values of those parameters are no longer fixed by experience as traditional methods, but can be modified by self-learning automatically. In addition, the performance of LGCN in gender recognition is further improved by applying a proposed feature combination strategy. The experimental results demonstrate that, compared to the standard CNNs with identical network architecture, our approach achieves better performance on three challenging public datasets without introducing any sacrifice in parameter size.

  • RF-Drone: Multi-Tag System for RF-ID Enables Drone Tracking in GPS-Denied Environments

    Xiang LU  Ziyang CHEN  Lianpo WANG  Ruidong LI  Chao ZHAI  

     
    PAPER

      Pubricized:
    2019/04/26
      Vol:
    E102-B No:10
      Page(s):
    1941-1950

    In resent years, providing location services for mobile targets in a closed environment has been a growing interest. In order to provide good localization and tracking performance for drones in GPS-denied scenarios, this paper proposes a multi-tag radio frequency identification (RFID) system that is easy to equip and does not take up the limited resources of the drone which is not susceptible to processor performance and cost constraints compared with computer vision based approaches. The passive RFID tags, no battery equipped, have an ultra-high resolution of millimeter level. We attach multiple tags to the drone and form multiple sets of virtual antenna arrays during motion, avoiding arranging redundant antennas in applications, and calibrating the speed chain to improve tracking performance. After combining the strap-down inertial navigation system (SINS) carried by the drone, we have established a coupled integration model that can suppress the drift error of SINS with time. The experiment was designed in bi-dimensional and three-dimensional scenarios, and the integrated positioning system based on SINS/RFID was evaluated. Finally, we discussed the impact of some parameters, this innovative approach is verified in real scenarios.

  • Polarization Filtering Based Transmission Scheme for Wireless Communications

    Zhangkai LUO  Zhongmin PEI  Bo ZOU  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:10
      Page(s):
    1387-1392

    In this letter, a polarization filtering based transmission (PFBT) scheme is proposed to enhance the spectrum efficiency in wireless communications. In such scheme, the information is divided into several parts and each is conveyed by a polarized signal with a unique polarization state (PS). Then, the polarized signals are added up and transmitted by the dual-polarized antenna. At the receiver side, the oblique projection polarization filters (OPPFs) are adopted to separate each polarized signal. Thus, they can be demodulated separately. We mainly focus on the construction methods of the OPPF matrix when the number of the separate parts is 2 and 3 and evaluate the performance in terms of the capacity and the bit error rate. In addition, we also discuss the probability of the signal separation when the number of the separate parts is equal or greater than 4. Theoretical results and simulation results demonstrate the performance of the proposed scheme.

  • A Robust Tracking with Low-Dimensional Target-Specific Feature Extraction Open Access

    Chengcheng JIANG  Xinyu ZHU  Chao LI  Gengsheng CHEN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/04/19
      Vol:
    E102-D No:7
      Page(s):
    1349-1361

    Pre-trained CNNs on ImageNet have been widely used in object tracking for feature extraction. However, due to the domain mismatch between image classification and object tracking, the submergence of the target-specific features by noise largely decreases the expression ability of the convolutional features, resulting in an inefficient tracking. In this paper, we propose a robust tracking algorithm with low-dimensional target-specific feature extraction. First, a novel cascaded PCA module is proposed to have an explicit extraction of the low-dimensional target-specific features, which makes the new appearance model more effective and efficient. Next, a fast particle filter process is raised to further accelerate the whole tracking pipeline by sharing convolutional computation with a ROI-Align layer. Moreover, a classification-score guided scheme is used to update the appearance model for adapting to target variations while at the same time avoiding the model drift that caused by the object occlusion. Experimental results on OTB100 and Temple Color128 show that, the proposed algorithm has achieved a superior performance among real-time trackers. Besides, our algorithm is competitive with the state-of-the-art trackers in precision while runs at a real-time speed.

  • Pulse Responses from Periodically Arrayed Dispersion Media with an Air Region

    Ryosuke OZAKI  Tsuneki YAMASAKI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E102-C No:6
      Page(s):
    479-486

    In this paper, we propose a new technique for the transient scattering problem of periodically arrayed dispersion media for the TE case by using a combination of the Fourier series expansion method (FSEM) and the fast inversion Laplace transform (FILT) method, and analyze the pulse response for various widths of the dispersion media. As a result, we clarified the influence of the dispersion media with an air region on the resulting waveform.

  • A Reduction of the Number of Components Included in Direct Simulation Type Active Complex Filter Open Access

    Tatsuya FUJII  Kazuhiro SHOUNO  

     
    LETTER-Analog Signal Processing

      Vol:
    E102-A No:6
      Page(s):
    842-844

    In this paper, a reduction of the number of components included in direct simulation type active complex filter is proposed. The proposed method is achieved by sharing NIC's (Negative Impedance Converters) which satisfy some conditions. Compared with the conventional method, the proposed one has wide generality. As an example, a third-order complex elliptic filter is designed. The validity of the proposed method is confirmed through experiment.

  • A Broadband Kalman Filtering Approach to Blind Multichannel Identification

    Yuanlei QI  Feiran YANG  Ming WU  Jun YANG  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:6
      Page(s):
    788-795

    The blind multichannel identification is useful in many applications. Although many approaches have been proposed to address this challenging problem, the adaptive filtering-based methods are attractive due to their computational efficiency and good convergence property. The multichannel normalized least mean-square (MCNLMS) algorithm is easy to implement, but it converges very slowly for a correlated input. The multichannel affine projection algorithm (MCAPA) is thus proposed to speed up the convergence. However, the convergence of the MCNLMS and MCAPA is still unsatisfactory in practice. In this paper, we propose a time-domain Kalman filtering approach to the blind multichannel identification problem. Specifically, the proposed adaptive Kalman filter is based on the cross relation method and also uses more past input vectors to explore the decorrelation property. Simulation results indicate that the proposed method outperforms the MCNLMS and MCAPA significantly in terms of the initial convergence and tracking capability.

  • A Power-Efficient Pulse-VCO for Chip-Scale Atomic Clock

    Haosheng ZHANG  Aravind THARAYIL NARAYANAN  Hans HERDIAN  Bangan LIU  Rui WU  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER

      Vol:
    E102-C No:4
      Page(s):
    276-286

    This paper presents a high power efficient pulse VCO with tail-filter for the chip-scale atomic clock (CSAC) application. The stringent power and clock stability specifications of next-generation CSAC demand a VCO with ultra-low power consumption and low phase noise. The proposed VCO architecture aims for the high power efficiency, while further reducing the phase noise using tail filtering technique. The VCO has been implemented in a standard 45nm SOI technology for validation. At an oscillation frequency of 5.0GHz, the proposed VCO achieves a phase noise of -120dBc/Hz at 1MHz offset, while consuming 1.35mW. This translates into an FoM of -191dBc/Hz.

  • Delta-Sigma ADC Based on Switched-Capacitor Integrator with FIR Filter Structure Open Access

    Satoshi SAIKATSU  Akira YASUDA  

     
    PAPER

      Vol:
    E102-A No:3
      Page(s):
    498-506

    This paper presents a novel delta-sigma modulator that uses a switched-capacitor (SC) integrator with the structure of a finite impulse response (FIR) filter in a loop filter configuration. The delta-sigma analog-to-digital converter (ΔΣADC) is used in various conversion systems to enable low-power, high-accuracy conversion using oversampling and noise shaping. Increasing the gain coefficient of the integrator in the loop filter configuration of the ΔΣADC suppresses the quantization noise that occurs in the signal band. However, there is a trade-off relationship between the integrator gain coefficient and system stability. The SC integrator, which contains an FIR filter, can suppress quantization noise in the signal band without requiring an additional operational amplifier. Additionally, it can realize a higher signal-to-quantization noise ratio. In addition, the poles that are added by the FIR filter structure can improve the system's stability. It is also possible to improve the flexibility of the pole placement in the system. Therefore, a noise transfer function that does not contain a large gain peak is realized. This results in a stable system operation. This paper presents the essential design aspects of a ΔΣADC with an FIR filter. Two types of simulation results are examined for the proposed first- and second-order, and these results confirm the effectiveness of the proposed architecture.

  • A Closed-Form of 2-D Maximally Flat Diamond-Shaped Half-Band FIR Digital Filters with Arbitrary Difference of the Filter Orders Open Access

    Taiki SHINOHARA  Takashi YOSHIDA  Naoyuki AIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:3
      Page(s):
    518-523

    Two-dimensional (2-D) maximally flat finite impulse response (FIR) digital filters have flat characteristics in both passband and stopband. 2-D maximally flat diamond-shaped half-band FIR digital filter can be designed very efficiently as a special case of 2-D half-band FIR filters. In some cases, this filter would require the reduction of the filter lengths for one of the axes while keeping the other axis unchanged. However, the conventional methods can realize such filters only if difference between each order is 2, 4 and 6. In this paper, we propose a closed-form frequency response of 2-D low-pass maximally flat diamond-shaped half-band FIR digital filters with arbitrary filter orders. The constraints to treat arbitrary filter orders are firstly proposed. Then, a closed-form transfer function is achieved by using Bernstein polynomial.

81-100hit(1579hit)