The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ICA(6943hit)

121-140hit(6943hit)

  • Fault-Resilient Robot Operating System Supporting Rapid Fault Recovery with Node Replication

    Jonghyeok YOU  Heesoo KIM  Kilho LEE  

     
    LETTER-Software System

      Pubricized:
    2023/07/07
      Vol:
    E106-D No:10
      Page(s):
    1742-1746

    This paper proposes a fault-resilient ROS platform supporting rapid fault detection and recovery. The platform employs heartbeat-based fault detection and node replication-based recovery. Our prototype implementation on top of the ROS Melodic shows a great performance in evaluations with a Nvidia development board and an inverted pendulum device.

  • Quantitative Estimation of Video Forgery with Anomaly Analysis of Optical Flow

    Wan Yeon LEE  Yun-Seok CHOI  Tong Min KIM  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/05/19
      Vol:
    E106-D No:10
      Page(s):
    1757-1760

    We propose a quantitative measurement technique of video forgery that eliminates the decision burden of subtle boundary between normal and tampered patterns. We also propose the automatic adjustment scheme of spatial and temporal target zones, which maximizes the abnormality measurement of forged videos. Evaluation shows that the proposed scheme provides manifest detection capability against both inter-frame and intra-frame forgeries.

  • Optimal Online Bin Packing Algorithms for Some Cases with Two Item Sizes

    Hiroshi FUJIWARA  Masaya KAWAGUCHI  Daiki TAKIZAWA  Hiroaki YAMAMOTO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2023/03/07
      Vol:
    E106-A No:9
      Page(s):
    1100-1110

    The bin packing problem is a problem of finding an assignment of a sequence of items to a minimum number of bins, each of capacity one. An online algorithm for the bin packing problem is an algorithm that irrevocably assigns each item one by one from the head of the sequence. Gutin, Jensen, and Yeo (2006) considered a version in which all items are only of two different sizes and the online algorithm knows the two possible sizes in advance, and gave an optimal online algorithm for the case when the larger size exceeds 1/2. In this paper we provide an optimal online algorithm for some of the cases when the larger size is at most 1/2, on the basis of a framework that facilitates the design and analysis of algorithms.

  • Computational Complexity of Allow Rule Ordering and Its Greedy Algorithm

    Takashi FUCHINO  Takashi HARADA  Ken TANAKA  Kenji MIKAWA  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2023/03/20
      Vol:
    E106-A No:9
      Page(s):
    1111-1118

    Packet classification is used to determine the behavior of incoming packets in network devices according to defined rules. As it is achieved using a linear search on a classification rule list, a large number of rules will lead to longer communication latency. To solve this, the problem of finding the order of rules minimizing the latency has been studied. Misherghi et al. and Harada et al. have proposed a problem that relaxes to policy-based constraints. In this paper, we show that the Relaxed Optimal Rule Ordering (RORO) for the allowlist is NP-hard, and by reducing from this we show that RORO for the general rule list is NP-hard. We also propose a heuristic algorithm based on the greedy method for an allowlist. Furthermore, we demonstrate the effectiveness of our method using ClassBench, which is a benchmark for packet classification algorithms.

  • Post-Quantum Anonymous One-Sided Authenticated Key Exchange without Random Oracles

    Ren ISHIBASHI  Kazuki YONEYAMA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/03/13
      Vol:
    E106-A No:9
      Page(s):
    1141-1163

    Authenticated Key Exchange (AKE) is a cryptographic protocol to share a common session key among multiple parties. Usually, PKI-based AKE schemes are designed to guarantee secrecy of the session key and mutual authentication. However, in practice, there are many cases where mutual authentication is undesirable such as in anonymous networks like Tor and Riffle, or difficult to achieve due to the certificate management at the user level such as the Internet. Goldberg et al. formulated a model of anonymous one-sided AKE which guarantees the anonymity of the client by allowing only the client to authenticate the server, and proposed a concrete scheme. However, existing anonymous one-sided AKE schemes are only known to be secure in the random oracle model. In this paper, we propose generic constructions of anonymous one-sided AKE in the random oracle model and in the standard model, respectively. Our constructions allow us to construct the first post-quantum anonymous one-sided AKE scheme from isogenies in the standard model.

  • Theory and Application of Topology-Based Exact Synthesis for Majority-Inverter Graphs

    Xianliang GE  Shinji KIMURA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/03/03
      Vol:
    E106-A No:9
      Page(s):
    1241-1250

    Majority operation has been paid attention as a basic element of beyond-Moore devices on which logic functions are constructed from Majority elements and inverters. Several optimization methods are developed to reduce the number of elements on Majority-Inverter Graphs (MIGs) but more area and power reduction are required. The paper proposes a new exact synthesis method for MIG based on a new topological constraint using node levels. Possible graph structures are clustered by the levels of input nodes, and all possible structures can be enumerated efficiently in the exact synthesis compared with previous methods. Experimental results show that our method decreases the runtime up to 25.33% compared with the fence-based method, and up to 6.95% with the partial-DAG-based method. Furthermore, our implementation can achieve better performance in size optimization for benchmark suites.

  • Envisioning 6G Outlook and Technical Enablers Open Access

    Hideaki TAKAHASHI  Hisashi ONOZAWA  Satish K.  Mikko A. UUSITALO  

     
    INVITED PAPER

      Pubricized:
    2023/05/23
      Vol:
    E106-B No:9
      Page(s):
    724-734

    6G research has been extensively conducted by individual organizations as well as pre-competitive joint research initiatives. One of the joint initiatives is the Hexa-X European 6G flagship project. This paper shares the up-to-date deliverables through which Hexa-X is envisioning the 6G era. The Hexa-X deliverables presented in this paper encompass the overall 6G vision, use cases and technical enablers. The latest deliverables on tenets of 6G architectural design and central pillars of technical enablers are presented. In conclusion, the authors encourage joint research and PoC collaboration with Japanese industry, academia and research initiatives for the potential technical enablers presented in this paper, aimed at global harmonization towards 6G standards.

  • Smart Radio Environments with Intelligent Reflecting Surfaces for 6G Sub-Terahertz-Band Communications Open Access

    Yasutaka OGAWA  Shuto TADOKORO  Satoshi SUYAMA  Masashi IWABUCHI  Toshihiko NISHIMURA  Takanori SATO  Junichiro HAGIWARA  Takeo OHGANE  

     
    INVITED PAPER

      Pubricized:
    2023/05/23
      Vol:
    E106-B No:9
      Page(s):
    735-747

    Technology for sixth-generation (6G) mobile communication system is now being widely studied. A sub-Terahertz band is expected to play a great role in 6G to enable extremely high data-rate transmission. This paper has two goals. (1) Introduction of 6G concept and propagation characteristics of sub-Terahertz-band radio waves. (2) Performance evaluation of intelligent reflecting surfaces (IRSs) based on beamforming in a sub-Terahertz band for smart radio environments (SREs). We briefly review research on SREs with reconfigurable intelligent surfaces (RISs), and describe requirements and key features of 6G with a sub-Terahertz band. After that, we explain propagation characteristics of sub-Terahertz band radio waves. Important feature is that the number of multipath components is small in a sub-Terahertz band in indoor office environments. This leads to an IRS control method based on beamforming because the number of radio waves out of the optimum beam is very small and power that is not used for transmission from the IRS to user equipment (UE) is little in the environments. We use beams generated by a Butler matrix or a DFT matrix. In simulations, we compare the received power at a UE with that of the upper bound value. Simulation results show that the proposed method reveals good performance in the sense that the received power is not so lower than the upper bound value.

  • Proof of Concept of Optimum Radio Access Technology Selection Scheme with Radars for Millimeter-Wave Networks Open Access

    Mitsuru UESUGI  Yoshiaki SHINAGAWA  Kazuhiro KOSAKA  Toru OKADA  Takeo UETA  Kosuke ONO  

     
    PAPER

      Pubricized:
    2023/05/23
      Vol:
    E106-B No:9
      Page(s):
    778-785

    With the rapid increase in the amount of data communication in 5G networks, there is a strong demand to reduce the power of the entire network, so the use of highly power-efficient millimeter-wave (mm-wave) networks is being considered. However, while mm-wave communication has high power efficiency, it has strong straightness, so it is difficult to secure stable communication in an environment with blocking. Especially when considering use cases such as autonomous driving, continuous communication is required when transmitting streaming data such as moving images taken by vehicles, it is necessary to compensate the blocking problem. For this reason, the authors examined an optimum radio access technology (RAT) selection scheme which selects mm-wave communication when mm-wave can be used and select wide-area macro-communication when mm-wave may be blocked. In addition, the authors implemented the scheme on a prototype device and conducted field tests and confirmed that mm-wave communication and macro communication were switched at an appropriate timing.

  • Performance of Broadcast Channel Using Hierarchical Modulation in OFDM Downlink

    Daiki MITAMURA  Mamoru SAWAHASHI  Yoshihisa KISHIYAMA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/03/22
      Vol:
    E106-B No:9
      Page(s):
    844-854

    This paper proposes a multiple code block transmission scheme using hierarchical modulation (HM) for a broadcast channel in the orthogonal frequency division multiplexing (OFDM) downlink. We investigate the average bit error rate (BER) performance of two-layer HM using 16 quadrature amplitude modulation (QAM) and three-layer HM using 64QAM in multipath Rayleigh fading channels. In multiple code block transmission using HM, the basic information bits are demodulated and decoded to all users within a cell that satisfy the bit error rate (BER) requirement. Hence, we investigate non-uniform QAM constellations to find one that suppresses the loss in the average BER of the basic information bits for HM to a low level compared to that using the original constellation in which only the basic information bits are transmitted while simultaneously minimizing the loss in the average BER of the secondary and tertiary information bits from the original constellations in which the information bits of the respective layers are transmitted alone. Based on the path loss equations in the Urban Macro and Rural Macro scenarios, we also investigate the maximum distance from a base station (BS) for the information bits of each layer to attain the required average received signal-to-noise power ratio (SNR) that achieves the average BER of 10-3.

  • Evaluation of Transmission Characteristics of 120-GHz-Band Close-Proximity Wireless Links Using Split-Ring-Resonator Absorber Integrated Planar Slot Antenna

    Akihiko HIRATA  Tubasa SAIJO  Yuma KAWAMOTO  Tadao NAGATSUMA  Issei WATANABE  Norihiko SEKINE  Akifumi KASAMATSU  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/03/09
      Vol:
    E106-C No:9
      Page(s):
    458-465

    We experimentally evaluated transmission characteristics of 120-GHz-band close-proximity wireless link that employs a split-ring resonator (SRR) millimeter-wave (MMW) absorber integrated on planar slot antennas in 120-GHz-band close-proximity wireless links. We fabricated the SRR MMW absorber made of a 0.28-μm-thick TaN film on a quartz substrate, and integrated it on planar single slot antennas. When the TaN SRRs are not integrated on the planar slot antennas, multiple reflections between the two antennas occur, and a >10-dB fluctuation of S21 at 100-140GHz is observed. When the TaN SRRs are integrated on the planar antennas, the fluctuation of S21 is suppressed to be 3.5dB at 100-140GHz. However, the transmittance of the close-proximity wireless link decreases by integrating TaN SRRs on the planar slot antenna because of reflection at the quartz substrate surface. The integration of the radiator that is composed of single SRR with two capacitors just above the slot antenna increased S21 by 3.5dB at 125GHz. We conducted a data transmission experiment over a close-proximity wireless link that employs radiator-and-TaN-SRR-integrated slot antennas for Tx and Rx, and succeeded to transmit 10-Gbit/s data over the close-proximity wireless link for the first time.

  • Fish School Behaviour Classification for Optimal Feeding Using Dense Optical Flow

    Kazuki FUKAE  Tetsuo IMAI  Kenichi ARAI  Toru KOBAYASHI  

     
    PAPER

      Pubricized:
    2023/06/20
      Vol:
    E106-D No:9
      Page(s):
    1472-1479

    With the growing global demand for seafood, sustainable aquaculture is attracting more attention than conventional natural fishing, which causes overfishing and damage to the marine environment. However, a major problem facing the aquaculture industry is the cost of feeding, which accounts for about 60% of a fishing expenditure. Excessive feeding increases costs, and the accumulation of residual feed on the seabed negatively impacts the quality of water environments (e.g., causing red tides). Therefore, the importance of raising fishes efficiently with less food by optimizing the timing and quantity of feeding becomes more evident. Thus, we developed a system to quantitate the amount of fish activity for the optimal feeding time and feed quantity based on the images taken. For quantitation, optical flow that is a method for tracking individual objects was used. However, it is difficult to track individual fish and quantitate their activity in the presence of many fishes. Therefore, all fish in the filmed screen were considered as a single school and the amount of change in an entire screen was used as the amount of the school activity. We divided specifically the entire image into fixed regions and quantitated by vectorizing the amount of change in each region using optical flow. A vector represents the moving distance and direction. We used the numerical data of a histogram as the indicator for the amount of fish activity by dividing them into classes and recording the number of occurrences in each class. We verified the effectiveness of the indicator by quantitating the eating and not eating movements during feeding. We evaluated the performance of the quantified indicators by the support vector classification, which is a form of machine learning. We confirmed that the two activities can be correctly classified.

  • Design of Enclosing Signing Keys by All Issuers in Distributed Public Key Certificate-Issuing Infrastructure

    Shohei KAKEI  Hiroaki SEKO  Yoshiaki SHIRAISHI  Shoichi SAITO  

     
    LETTER

      Pubricized:
    2023/05/25
      Vol:
    E106-D No:9
      Page(s):
    1495-1498

    This paper first takes IoT as an example to provide the motivation for eliminating the single point of trust (SPOT) in a CA-based private PKI. It then describes a distributed public key certificate-issuing infrastructure that eliminates the SPOT and its limitation derived from generating signing keys. Finally, it proposes a method to address its limitation by all certificate issuers.

  • Surface Defect Image Classification of Lithium Battery Pole Piece Based on Deep Learning

    Weisheng MAO  Linsheng LI  Yifan TAO  Wenyi ZHOU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/06/12
      Vol:
    E106-D No:9
      Page(s):
    1546-1555

    Aiming at the problem of low classification accuracy of surface defects of lithium battery pole pieces by traditional classification methods, an image classification algorithm for surface defects of lithium battery pole piece based on deep learning is proposed in this paper. Firstly, Wavelet Threshold and Histogram Equalization are used to preprocess the detect image to weaken influence of noise in non-defect regions and enhance defect features. Secondly, a VGG-InceptionV2 network with better performance is proposed by adding InceptionV2 structure to the improved VGG network structure. Then the original data set is expanded by rotating, flipping and contrast adjustment, and the optimal value of the model hyperparameters is determined by experiments. Finally, the model in this paper is compared with VGG16 and GoogLeNet to realize the recognition of defect types. The results show that the accuracy rate of the model in this paper for the surface pole piece defects of lithium batteries is 98.75%, and the model parameters is only 1.7M, which has certain significance for the classification of lithium battery surface pole piece defects in industry.

  • An Integrated Convolutional Neural Network with a Fusion Attention Mechanism for Acoustic Scene Classification

    Pengxu JIANG  Yue XIE  Cairong ZOU  Li ZHAO  Qingyun WANG  

     
    LETTER-Engineering Acoustics

      Pubricized:
    2023/02/06
      Vol:
    E106-A No:8
      Page(s):
    1057-1061

    In human-computer interaction, acoustic scene classification (ASC) is one of the relevant research domains. In real life, the recorded audio may include a lot of noise and quiet clips, making it hard for earlier ASC-based research to isolate the crucial scene information in sound. Furthermore, scene information may be scattered across numerous audio frames; hence, selecting scene-related frames is crucial for ASC. In this context, an integrated convolutional neural network with a fusion attention mechanism (ICNN-FA) is proposed for ASC. Firstly, segmented mel-spectrograms as the input of ICNN can assist the model in learning the short-term time-frequency correlation information. Then, the designed ICNN model is employed to learn these segment-level features. In addition, the proposed global attention layer may gather global information by integrating these segment features. Finally, the developed fusion attention layer is utilized to fuse all segment-level features while the classifier classifies various situations. Experimental findings using ASC datasets from DCASE 2018 and 2019 indicate the efficacy of the suggested method.

  • Demonstration of Chaos-Based Radio Encryption Modulation Scheme through Wired Transmission Experiments Open Access

    Kenya TOMITA  Mamoru OKUMURA  Eiji OKAMOTO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/01/25
      Vol:
    E106-B No:8
      Page(s):
    686-695

    With the recent commercialization of fifth-generation mobile communication systems (5G), wireless communications are being used in various fields. Accordingly, the number of situations in which sensitive information, such as personal data is handled in wireless communications is increasing, and so is the demand for confidentiality. To meet this demand, we proposed a chaos-based radio-encryption modulation that combines physical layer confidentiality and channel coding effects, and we have demonstrated its effectiveness through computer simulations. However, there are no demonstrations of performances using real signals. In this study, we constructed a transmission system using Universal Software Radio Peripheral, a type of software-defined radio, and its control software LabVIEW. We conducted wired transmission experiments for the practical use of radio-frequency encrypted modulation. The results showed that a gain of 0.45dB at a bit error rate of 10-3 was obtained for binary phase-shift keying, which has the same transmission efficiency as the proposed method under an additive white Gaussian noise channel. Similarly, a gain of 10dB was obtained under fading conditions. We also evaluated the security ability and demonstrated that chaos modulation has both information-theoretic security and computational security.

  • Deep Multiplicative Update Algorithm for Nonnegative Matrix Factorization and Its Application to Audio Signals

    Hiroki TANJI  Takahiro MURAKAMI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2023/01/19
      Vol:
    E106-A No:7
      Page(s):
    962-975

    The design and adjustment of the divergence in audio applications using nonnegative matrix factorization (NMF) is still open problem. In this study, to deal with this problem, we explore a representation of the divergence using neural networks (NNs). Instead of the divergence, our approach extends the multiplicative update algorithm (MUA), which estimates the NMF parameters, using NNs. The design of the extended MUA incorporates NNs, and the new algorithm is referred to as the deep MUA (DeMUA) for NMF. While the DeMUA represents the algorithm for the NMF, interestingly, the divergence is obtained from the incorporated NN. In addition, we propose theoretical guides to design the incorporated NN such that it can be interpreted as a divergence. By appropriately designing the NN, MUAs based on existing divergences with a single hyper-parameter can be represented by the DeMUA. To train the DeMUA, we applied it to audio denoising and supervised signal separation. Our experimental results show that the proposed architecture can learn the MUA and the divergences in sparse denoising and speech separation tasks and that the MUA based on generalized divergences with multiple parameters shows favorable performances on these tasks.

  • Simultaneous Visible Light Communication and Ranging Using High-Speed Stereo Cameras Based on Bicubic Interpolation Considering Multi-Level Pulse-Width Modulation

    Ruiyi HUANG  Masayuki KINOSHITA  Takaya YAMAZATO  Hiraku OKADA  Koji KAMAKURA  Shintaro ARAI  Tomohiro YENDO  Toshiaki FUJII  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2022/12/26
      Vol:
    E106-A No:7
      Page(s):
    990-997

    Visible light communication (VLC) and visible light ranging are applicable techniques for intelligent transportation systems (ITS). They use every unique light-emitting diode (LED) on roads for data transmission and range estimation. The simultaneous VLC and ranging can be applied to improve the performance of both. It is necessary to achieve rapid data rate and high-accuracy ranging when transmitting VLC data and estimating the range simultaneously. We use the signal modulation method of pulse-width modulation (PWM) to increase the data rate. However, when using PWM for VLC data transmission, images of the LED transmitters are captured at different luminance levels and are easily saturated, and LED saturation leads to inaccurate range estimation. In this paper, we establish a novel simultaneous visible light communication and ranging system for ITS using PWM. Here, we analyze the LED saturation problems and apply bicubic interpolation to solve the LED saturation problem and thus, improve the communication and ranging performance. Simultaneous communication and ranging are enabled using a stereo camera. Communication is realized using maximal-ratio combining (MRC) while ranging is achieved using phase-only correlation (POC) and sinc function approximation. Furthermore, we measured the performance of our proposed system using a field trial experiment. The results show that error-free performance can be achieved up to a communication distance of 55 m and the range estimation errors are below 0.5m within 60m.

  • Basic Study of Micro-Pumps for Medication Driven by Chemical Reactions

    Mizuki IKEDA  Satomitsu IMAI  

     
    BRIEF PAPER

      Pubricized:
    2022/11/28
      Vol:
    E106-C No:6
      Page(s):
    253-257

    We have developed and evaluated a prototype micro-pump for a new form of medication that is driven by a chemical reaction. The chemical reaction between citric acid and sodium bicarbonate produces carbon dioxide, the pressure of which pushes the medication out. This micropump is smaller in size than conventional diaphragm-type micropumps and is suitable for swallowing.

  • Constructions of Low/Zero Correlation Zone Sequence Sets and Their Application in Grant-Free Non-Orthogonal Multiple Access System

    Tao LIU  Meiyue WANG  Dongyan JIA  Yubo LI  

     
    PAPER-Information Theory

      Pubricized:
    2022/12/16
      Vol:
    E106-A No:6
      Page(s):
    907-915

    In the massive machine-type communication scenario, aiming at the problems of active user detection and channel estimation in the grant-free non-orthogonal multiple access (NOMA) system, new sets of non-orthogonal spreading sequences are proposed by using the zero/low correlation zone sequence set with low correlation among multiple sets. The simulation results show that the resulting sequence set has low coherence, which presents reliable performance for channel estimation and active user detection based on compressed sensing. Compared with the traditional Zadoff-Chu (ZC) sequences, the new non-orthogonal spreading sequences have more flexible lengths, and lower peak-to-average power ratio (PAPR) and smaller alphabet size. Consequently, these sequences will effectively solve the problem of high PAPR of time domain signals and are more suitable for low-cost devices in massive machine-type communication.

121-140hit(6943hit)