Takahito YOSHIDA Takaharu YAGUCHI Takashi MATSUBARA
Accurately simulating physical systems is essential in various fields. In recent years, deep learning has been used to automatically build models of such systems by learning from data. One such method is the neural ordinary differential equation (neural ODE), which treats the output of a neural network as the time derivative of the system states. However, while this and related methods have shown promise, their training strategies still require further development. Inspired by error analysis techniques in numerical analysis while replacing numerical errors with modeling errors, we propose the error-analytic strategy to address this issue. Therefore, our strategy can capture long-term errors and thus improve the accuracy of long-term predictions.
Akira KAWAHARA Jun SHIBAYAMA Kazuhiro FUJITA Junji YAMAUCHI Hisamatsu NAKANO
Numerical dispersion property is investigated for the finite-difference time-domain (FDTD) method based on the iterated Crank-Nicolson (ICN) scheme. The numerical dispersion relation is newly derived from the amplification matrix and its property is discussed with attention to the eigenvalue of the matrix. It is shown that the ICN-FDTD method is conditionally stable but slightly dissipative.
Seiya KISHIMOTO Ryoya OGINO Kenta ARASE Shinichiro OHNUKI
This paper introduces a computational approach for transient analysis of extensive scattering problems. This novel method is based on the combination of physical optics (PO) and the fast inverse Laplace transform (FILT). PO is a technique for analyzing electromagnetic scattering from large-scale objects. We modify PO for application in the complex frequency domain, where the scattered fields are evaluated. The complex frequency function is efficiently transformed into the time domain using FILT. The effectiveness of this combination is demonstrated through large-scale analysis and transient response for a short pulse incidence. The accuracy is investigated and validated by comparison with reference solutions.
Haonan CHEN Akito IGUCHI Yasuhide TSUJI
In order to calculate photonic devices with slowly varying waveguide structure along propagation direction, we develop finite element beam propagation method (FE-BPM) with coordinate transformation. In this approach, converting a longitudinally varying waveguide into the equivalent straight waveguide, cumbersome processes in FE-BPM, such as mesh updating and field interpolation processes at each propagation step, can be avoided. We employ this simulation technique in shape optimization of photonic devices and show design examples of mode converter. To show the validity of this approach, the calculated results of designed devices are compared with the finite element method (FEM) or the standard FE-BPM.
Akira SAITOU Kaito UCHIDA Kanki KITAYAMA Ryo ISHIKAWA Kazuhiko HONJO
Analytical expression of transmission for the orbital angular momentum (OAM) communication using loop antenna arrays and paraboloids is derived to achieve a communication distance of 100 m. With the field distribution of the single “transformed OAM mode” radiated by a loop antenna, the collimated field by the transmitting paraboloid and its diffracted field are analytically derived. Effects of frequencies, sizes of paraboloids, and shifts of transmitting and receiving arrays from the focal planes are included. With the diffracted field distribution on the focal plane of the receiving paraboloid, transmission between the transmitting and receiving loop antennas is analytically estimated. It is shown that the transmission between the antennas with different OAM modes is null, but the transmission between the antennas with the same mode can be reduced. To clarify the mechanism of the reduction, factors of the reduction are quantitatively defined, and the explicit formulae are derived. Based on the analytical results, numerical estimation for a communication distance of 100 m is demonstrated, where the frequency, the focal length, and the size of the paraboloid are 150 GHz, 50 cm and 100 cm, respectively. Where both arrays are located on each focal plane, the transmission for the signal is more than -7.78 dB for eight kinds of OAM modes. The transmission is the least for the highest-order mode. The transmission loss is shown to be mitigated by optimizing the shifts of transmitting and receiving arrays from their focal planes. The loss is made almost even by exploiting the tradeoff of the improvement for the mode orders. The transmission is improved by 5.98 dB, to be more than -1.80 dB, by optimizing the shifts of the arrays.
Yun WU ZiHao CHEN MengYao LI Han HAI
Intelligent reflecting surface (IRS) is an effective technology to improve the energy and spectral efficiency of wireless powered communication network (WPCN). Under user cooperation, we propose an IRS-assisted WPCN system where the wireless devices (WDs) collect wireless energy in the downlink (DL) and then share data. The adjacent single-antenna WDs cooperate to form a virtual antenna array so that their information can be simultaneously transmitted to the multi-antenna common hybrid access point (HAP) through the uplink (UL) using multiple-input multiple-output (MIMO) technology. By jointly optimizing the passive beamforming at the IRS, the active beamforming in the DL and the UL, the energy consumed by data sharing, and the time allocation of each phase, we formulate an UL throughput maximization problem. However, this optimization problem is non-convex since the optimization variables are highly coupled. In this study, we apply the alternating optimization (AO) technology to decouple the optimization variables and propose an efficient algorithm to avoid the difficulty of directly solving the problem. Numerical results indicate that the joint optimization method significantly improves the UL throughput performance in multi-user WPCN compared with various baseline methods.
Shohei KAMAMURA Yuhei HAYASHI Takayuki FUJIWARA
This paper proposes an anomaly-detection method using the Fast xFlow Proxy, which enables fine-grained measurement of communication traffic. When a fault occurs in services or networks, communication traffic changes from its normal behavior. Therefore, anomalies can be detected by analyzing their autocorrelations. However, in large-scale carrier networks, packets are generally encapsulated and observed as aggregate values, making it difficult to detect minute changes in individual communication flows. Therefore, we developed the Fast xFlow Proxy, which analyzes encapsulated packets in real time and enables flows to be measured at an arbitrary granularity. In this paper, we propose an algorithm that utilizes the Fast xFlow Proxy to detect not only the anomaly occurrence but also its cause, that is, the location of the fault at the end-to-end. The idea is not only to analyze the autocorrelation of a specific flow but also to apply spatial analysis to estimate the fault location by comparing the behavior of multiple flows. Through extensive simulations, we demonstrate that base station, network, and service faults can be detected without any false negative detections.
With the emphasis on personal information privacy protection in wireless communications, the new dimension low-interception covert transmission technology represented by the vortex wave with Orbital Angular Momentum (OAM) has received attention from both academia and industry. However, the current OAM low-interception transmission techniques all assume that the eavesdropper can only receive plane wave signals, which is a very ideal situation. Once the eavesdropper is configured with an OAM sensor, the so-called mode covert channel will be completely exposed. To solve this problem, this paper proposes a vortex microwave photon low-interception transmission method. The proposed method utilizes the differential operation between plane and vortex microwave photons signals to construct the covert differential channel, which can hide the user data in the mode domain. Compared with the traditional spread spectrum transmission, our proposed covert differential channel schemes need less transmitted power to achieve reliable transmission, which means less possibility of being intercepted by the eavesdropper.
Gebreselassie HAILE Jaesung LIM
An unmanned aerial vehicle (UAV) can be used for wireless communication and localization, among many other things. When terrestrial networks are either damaged or non-existent, and the area is GPS-denied, the UAV can be quickly deployed to provide communication and localization services to ground terminals in a specific target area. In this study, we propose an UAV operation model for unified communication and localization using reinforcement learning (UCL-RL) in a suburban environment which has no cellular communication and GPS connectivity. First, the UAV flies to the target area, moves in a circular fashion with a constant turning radius and sends navigation signals from different positions to the ground terminals. This provides a dynamic environment that includes the turning radius, the navigation signal transmission points, and the height of the unmanned aerial vehicle as well as the location of the ground terminals. The proposed model applies a reinforcement learning algorithm where the UAV continuously interacts with the environment and learns the optimal height that provides the best communication and localization services to the ground terminals. To evaluate the terminal position accuracy, position dilution of precision (PDOP) is measured, whereas the maximum allowable path loss (MAPL) is measured to evaluate the communication service. The simulation result shows that the proposed model improves the localization of the ground terminals while guaranteeing the communication service.
Nonradiative dielectric waveguide is a transmission medium for millimeter-wave integrated circuits, invented in Japan. This transmission line is characterized by low transmission loss and non-radiating nature in bends and discontinuities. It has been actively researched from 1980 to 2000, primarily at Tohoku University. This paper explains the fundamental characteristics, including passive and active circuits, and provides an overview of millimeter-wave systems such as gigabit-class ultra-high-speed data transmission applications and various radar applications. Furthermore, the performance in the THz frequency band, where future applications are anticipated, is also discussed.
Japan encounters an urgent issue of “Carbon Neutrality” as a member of the international world and is required to make the action plans to accomplish this issue, i.e., the zero emission of CO2 by 2050. Our world must change the industries to adapt to the electrification based on the renewable powers. Microwave chemistry is a candidate of electrification of industries for the carbon neutrality on the conditions of usage of renewable energy power generation. This invited paper shows an example of “Microwave Pidgeon process” for smelting magnesium in which heating with burning fossil coals can be replaced with microwave energy for discussing how microwave technology should be developed for that purpose from both the academic and industrial sides.
In this paper, we delve into wireless communications in the 300 GHz band, focusing in particular on the continuous bandwidth of 44 GHz from 252 GHz to 296 GHz, positioning it as a pivotal element in the trajectory toward 6G communications. While terahertz communications have traditionally been praised for the high speeds they can achieve using their wide bandwidth, focusing the beam has also shown the potential to achieve high energy efficiency and support numerous simultaneous connectivity. To this end, new performance metrics, EIRPλ and EINFλ, are introduced as important benchmarks for transmitter and receiver performance, and their consistency is discussed. We then show that, assuming conventional bandwidth and communication capacity, the communication distance is independent of carrier frequency. Located between radio waves and light in the electromagnetic spectrum, terahertz waves promise to usher in a new era of wireless communications characterized not only by high-speed communication, but also by convenience and efficiency. Improvements in antenna gain, beam focusing, and precise beam steering are essential to its realization. As these technologies advance, the paradigm of wireless communications is expected to be transformed. The synergistic effects of antenna gain enhancement, beam focusing, and steering will not only push high-speed communications to unprecedented levels, but also lay the foundation for a wireless communications landscape defined by unparalleled convenience and efficiency. This paper will discuss a future in which terahertz communications will reshape the contours of wireless communications as the realization of such technological breakthroughs draws near.
Reliability is an important figure of merit of the system and it must be satisfied in safety-critical applications. This paper considers parallel applications on heterogeneous embedded systems and proposes a two-phase algorithm framework to minimize energy consumption for satisfying applications’ reliability requirement. The first phase is for initial assignment and the second phase is for either satisfying the reliability requirement or improving energy efficiency. Specifically, when the application’s reliability requirement cannot be achieved via the initial assignment, an algorithm for enhancing the reliability of tasks is designed to satisfy the application’s reliability requirement. Considering that the reliability of initial assignment may exceed the application’s reliability requirement, an algorithm for reducing the execution frequency of tasks is designed to improve energy efficiency. The proposed algorithms are compared with existing algorithms by using real parallel applications. Experimental results demonstrate that the proposed algorithms consume less energy while satisfying the application’s reliability requirements.
Jiakai LI Jianyong DUAN Hao WANG Li HE Qing ZHANG
Chinese spelling correction is a foundational task in natural language processing that aims to detect and correct spelling errors in text. Most spelling corrections in Chinese used multimodal information to model the relationship between incorrect and correct characters. However, feature information mismatch occured during fusion result from the different sources of features, causing the importance relationships between different modalities to be ignored, which in turn restricted the model from learning in an efficient manner. To this end, this paper proposes a multimodal language model-based Chinese spelling corrector, named as MISpeller. The method, based on ChineseBERT as the basic model, allows the comprehensive capture and fusion of character semantic information, phonetic information and graphic information in a single model without the need to construct additional neural networks, and realises the phenomenon of unequal fusion of multi-feature information. In addition, in order to solve the overcorrection issues, the replication mechanism is further introduced, and the replication factor is used as the dynamic weight to efficiently fuse the multimodal information. The model is able to control the proportion of original characters and predicted characters according to different input texts, and it can learn more specifically where errors occur. Experiments conducted on the SIGHAN benchmark show that the proposed model achieves the state-of-the-art performance of the F1 score at the correction level by an average of 4.36%, which validates the effectiveness of the model.
Radar emitter identification (REI) is a crucial function of electronic radar warfare support systems. The challenge emphasizes identifying and locating unique transmitters, avoiding potential threats, and preparing countermeasures. Due to the remarkable effectiveness of deep learning (DL) in uncovering latent features within data and performing classifications, deep neural networks (DNNs) have seen widespread application in radar emitter identification (REI). In many real-world scenarios, obtaining a large number of annotated radar transmitter samples for training identification models is essential yet challenging. Given the issues of insufficient labeled datasets and abundant unlabeled training datasets, we propose a novel REI method based on a semi-supervised learning (SSL) framework with virtual adversarial training (VAT). Specifically, two objective functions are designed to extract the semantic features of radar signals: computing cross-entropy loss for labeled samples and virtual adversarial training loss for all samples. Additionally, a pseudo-labeling approach is employed for unlabeled samples. The proposed VAT-based SS-REI method is evaluated on a radar dataset. Simulation results indicate that the proposed VAT-based SS-REI method outperforms the latest SS-REI method in recognition performance.
Smart cities aim to improve the quality of life of citizens and efficiency of city operations through utilization of 5G communication technology. Based on various technologies such as IoT, cloud computing, artificial intelligence, and big data, they provide smart services in terms of urban planning, development, and management for solving problems such as fine dust, traffic congestion and safety, energy efficiency, water shortage, and an aging population. However, as smart city has an open network structure, an adversary can easily try to gain illegal access and perform denial of service and sniffing attacks that can threaten the safety and privacy of citizens. In smart cities, the global mobility network (GLOMONET) supports mobile services between heterogeneous networks of mobile devices such as autonomous vehicles and drones. Recently, Chen et al. proposed a user authentication scheme for GLOMONET in smart cities. Nevertheless, we found some weaknesses in the scheme proposed by them. In this study, we propose a secure lightweight authentication for roaming services in a smart city, called SLARS, to enhance security. We proved that SLARS is more secure and efficient than the related authentication scheme for GLOMONET through security and performance analysis. Our analysis results show that SLARS satisfies all security requirements in GLOMONET and saves 72.7% of computation time compared to that of Chen et al.’s scheme.
Zhibo CAO Pengfei HAN Hongming LYU
This paper introduces a computer-aided low-power design method for tapered buffers that address given load capacitances, output transition times, and source impedances. Cross-voltage-domain tapered buffers involving a low-voltage domain in the frontier stages and a high-voltage domain in the posterior stages are further discussed which breaks the trade-off between the energy dissipation and the driving capability in conventional designs. As an essential circuit block, a dedicated analytical model for the level-shifter is proposed. The energy-optimized tapered buffer design is verified for different source and load conditions in a 180-nm CMOS process. The single-VDD buffer model achieves an average inaccuracy of 8.65% on the transition loss compared with Spice simulation results. Cross-voltage tapered buffers can be optimized to further remarkably reduce the energy consumption. The study finds wide applications in energy-efficient switching-mode analog applications.
Batnasan LUVAANJALBA Elaine Yi-Ling WU
Emergency Medical Services (EMS) play a crucial role in healthcare systems, managing pre-hospital or out-of-hospital emergencies from the onset of an emergency call to the patient’s arrival at a healthcare facility. The design of an efficient ambulance location model is pivotal in enhancing survival rates, controlling morbidity, and preventing disability. Key factors in the classical models typically include travel time, demand zones, and the number of stations. While urban EMS systems have received extensive examination due to their centralized populations, rural areas pose distinct challenges. These include lower population density and longer response distances, contributing to a higher fatality rate due to sparse population distribution, limited EMS stations, and extended travel times. To address these challenges, we introduce a novel mathematical model that aims to optimize coverage and equity. A distinctive feature of our model is the integration of equity within the objective function, coupled with a focus on practical response time that includes the period required for personal protective equipment procedures, ensuring the model’s applicability and realism in emergency response scenarios. We tackle the proposed problem using a tailored genetic algorithm and propose a greedy algorithm for solution construction. The implementation of our tailored Genetic Algorithm promises efficient and effective EMS solutions, potentially enhancing emergency care and health outcomes in rural communities.
Power line communication (PLC) provides a flexible-access, wide-distribution, and low-cost communication solution for distribution network services. However, the PLC self-organizing networking in distribution network faces several challenges such as diversified data transmission requirements guarantee, the contradiction between long-term constraints and short-term optimization, and the uncertainty of global information. To address these challenges, we propose a backpressure learning-based data transmission reliability-aware self-organizing networking algorithm to minimize the weighted sum of node data backlogs under the long-term transmission reliability constraint. Specifically, the minimization problem is transformed by the Lyapunov optimization and backpressure algorithm. Finally, we propose a backpressure and data transmission reliability-aware state-action-reward-state-action (SARSA)-based self-organizing networking strategy to realize the PLC networking optimization. Simulation results demonstrate that the proposed algorithm has superior performances of data backlogs and transmission reliability.
Zhimin SHAO Chunxiu LIU Cong WANG Longtan LI Yimin LIU Zaiyan ZHOU
Data resource sharing can guarantee the reliable and safe operation of distribution power grid. However, it faces the challenges of low security and high delay in the sharing process. Consortium blockchain can ensure the security and efficiency of data resource sharing, but it still faces problems such as arbitrary master node selection and high consensus delay. In this paper, we propose an improved practical Byzantine fault tolerance (PBFT) consensus algorithm based on intelligent consensus node selection to realize high-security and real-time data resource sharing for distribution power grid. Firstly, a blockchain-based data resource sharing model is constructed to realize secure data resource storage by combining the consortium blockchain and interplanetary file system (IPFS). Then, the improved PBFT consensus algorithm is proposed to optimize the consensus node selection based on the upper confidence bound of node performance. It prevents Byzantine nodes from participating in the consensus process, reduces the consensus delay, and improves the security of data resource sharing. The simulation results verify the effectiveness of the proposed algorithm.