The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ISM(359hit)

121-140hit(359hit)

  • A Breast Cancer Classifier Using a Neuron Model with Dendritic Nonlinearity

    Zijun SHA  Lin HU  Yuki TODO  Junkai JI  Shangce GAO  Zheng TANG  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2015/04/16
      Vol:
    E98-D No:7
      Page(s):
    1365-1376

    Breast cancer is a serious disease across the world, and it is one of the largest causes of cancer death for women. The traditional diagnosis is not only time consuming but also easily affected. Hence, artificial intelligence (AI), especially neural networks, has been widely used to assist to detect cancer. However, in recent years, the computational ability of a neuron has attracted more and more attention. The main computational capacity of a neuron is located in the dendrites. In this paper, a novel neuron model with dendritic nonlinearity (NMDN) is proposed to classify breast cancer in the Wisconsin Breast Cancer Database (WBCD). In NMDN, the dendrites possess nonlinearity when realizing the excitatory synapses, inhibitory synapses, constant-1 synapses and constant-0 synapses instead of being simply weighted. Furthermore, the nonlinear interaction among the synapses on a dendrite is defined as a product of the synaptic inputs. The soma adds all of the products of the branches to produce an output. A back-propagation-based learning algorithm is introduced to train the NMDN. The performance of the NMDN is compared with classic back propagation neural networks (BPNNs). Simulation results indicate that NMDN possesses superior capability in terms of the accuracy, convergence rate, stability and area under the ROC curve (AUC). Moreover, regarding ROC, for continuum values, the existing 0-connections branches after evolving can be eliminated from the dendrite morphology to release computational load, but with no influence on the performance of classification. The results disclose that the computational ability of the neuron has been undervalued, and the proposed NMDN can be an interesting choice for medical researchers in further research.

  • A Robust Interference Covariance Matrix Reconstruction Algorithm against Arbitrary Interference Steering Vector Mismatch

    Xiao Lei YUAN  Lu GAN  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:7
      Page(s):
    1553-1557

    We address a robust algorithm for the interference-plus-noise covariance matrix reconstruction (RA-INCMR) against random arbitrary steering vector mismatches (RASVMs) of the interferences, which lead to substantial degradation of the original INCMR beamformer performance. Firstly, using the worst-case performance optimization (WCPO) criteria, we model these RASVMs as uncertainty sets and then propose the RA-INCMR to obtain the robust INCM (RINCM) based on the Robust Capon Beamforming (RCB) algorithm. Finally, we substitute the RINCM back into the original WCPO beamformer problem for the sample covariance matrix to formulate the new RA-INCM-WCPO beamformer problem. Simulation results demonstrate that the performance of the proposed beamformer is much better than the original INCMR beamformer when there exist RASVMs, especially at low signal-to-noise ratio (SNR).

  • Performance Analysis of Demand Data Modification Mechanism for Power Balancing Control

    Yuki MINAMI  Shun-ichi AZUMA  

     
    LETTER-Systems and Control

      Vol:
    E98-A No:7
      Page(s):
    1562-1564

    For the electric demand prediction problem, a modification mechanism of predicted demand data has been proposed in the previous work. In this paper, we analyze the performance of the modification mechanism in power balancing control. Then, we analytically derive an upper bound of the performance, which is characterized by system parameters and prediction precision.

  • Resistive Switching Characteristics of Silicon Nitride-Based RRAM Depending on Top Electrode Metals

    Sungjun KIM  Sunghun JUNG  Min-Hwi KIM  Seongjae CHO  Byung-Gook PARK  

     
    PAPER

      Vol:
    E98-C No:5
      Page(s):
    429-433

    In this work, resistive switching random-access memory (RRAM) devices having a structure of metal/Si$_{3}$N$_{4}$/Si with different top electrode metals were fabricated to investigate the changes in switching and conduction mechanisms depending on electrode metals. It is shown that the metal workfunction is not strongly related with either high-resistance state (HRS) and forming voltage. Top electrodes (TEs) of Al, Cu, and Ni show both bipolar and unipolar switching characteristics. The changes of resistances in these devices can be explained by the different defect arrangements in the switching layer (SL). Among the devices with different TE metals, one with Ag electrode does not show unipolar switching unlike the others. The conducting filaments of Ag-electrode device in the low-resistance state (LRS) demonstrated metallic behaviors in the temperature-controlled experiments, which supports that Ag substantially participates in the conduction as a filament source. Moreover, the difference in switching speed is identified depending on TE metals.

  • A Load-Balanced Deterministic Runtime for Pipeline Parallelism

    Chen CHEN  Kai LU  Xiaoping WANG  Xu ZHOU  Zhendong WU  

     
    LETTER-Software System

      Pubricized:
    2014/10/21
      Vol:
    E98-D No:2
      Page(s):
    433-436

    Most existing deterministic multithreading systems are costly on pipeline parallel programs due to load imbalance. In this letter, we propose a Load-Balanced Deterministic Runtime (LBDR) for pipeline parallelism. LBDR deterministically takes some tokens from non-synchronization-intensive threads to synchronization-intensive threads. Experimental results show that LBDR outperforms the state-of-the-art design by an average of 22.5%.

  • Generic Fully Simulatable Adaptive Oblivious Transfer

    Kaoru KUROSAWA  Ryo NOJIMA  Le Trieu PHONG  

     
    PAPER-Foundation

      Vol:
    E98-A No:1
      Page(s):
    232-245

    We aim at constructing adaptive oblivious transfer protocols, enjoying fully simulatable security, from various well-known assumptions such as DDH, d-Linear, QR, and DCR. To this end, we present two generic constructions of adaptive OT, one of which utilizes verifiable shuffles together with threshold decryption schemes, while the other uses permutation networks together with what we call loosely-homomorphic key encapsulation schemes. The constructions follow a novel designing approach called “blind permutation”, which completely differs from existing ones. We then show that specific choices of the building blocks lead to concrete adaptive OT protocols with fully simulatable security in the standard model under the targeted assumptions. Our generic methods can be extended to build universally composable (UC) secure OT protocols, with a loss in efficiency.

  • Compact Authenticated Key Exchange from Bounded CCA-Secure KEM

    Kazuki YONEYAMA  

     
    PAPER-Public Key Based Cryptography

      Vol:
    E98-A No:1
      Page(s):
    132-143

    How to reduce communication complexity is a common important issue to design cryptographic protocols. This paper focuses on authenticated key exchange (AKE). Several AKE schemes have been studied, which satisfy strong security such as exposure-resilience in the standard model (StdM). However, there is a large gap on communication costs between schemes in the StdM and in the random oracle model. In this paper, we show a generic construction that is significantly compact (i.e., small communication cost) and secure in the StdM. We follow an existing generic construction from key encapsulated mechanism (KEM). Our main technique is to use a bounded chosen-ciphertext secure KEM instead of an ordinary chosen-ciphertext secure KEM. The communication cost can be reduced to half by this technique, and we achieve the most compact AKE scheme in the StdM. Moreover, our construction has instantiations under wider classes of hardness assumptions (e.g., subset-sum problems and multi-variate quadratic systems) than existing constructions. This work pioneers the first meaningful application of bounded chosen-ciphertext secure KEM.

  • MLP-Aware Dynamic Instruction Window Resizing in Superscalar Processors for Adaptively Exploiting Available Parallelism

    Yuya KORA  Kyohei YAMAGUCHI  Hideki ANDO  

     
    PAPER-Computer System

      Pubricized:
    2014/09/22
      Vol:
    E97-D No:12
      Page(s):
    3110-3123

    Single-thread performance has not improved much over the past few years, despite an ever increasing transistor budget. One of the reasons for this is that there is a speed gap between the processor and main memory, known as the memory wall. A promising method to overcome this memory wall is aggressive out-of-order execution by extensively enlarging the instruction window resources to exploit memory-level parallelism (MLP). However, simply enlarging the window resources lengthens the clock cycle time. Although pipelining the resources solves this problem, it in turn prevents instruction-level parallelism (ILP) from being exploited because issuing instructions requires multiple clock cycles. This paper proposed a dynamic scheme that adaptively resizes the instruction window based on the predicted available parallelism, either ILP or MLP. Specifically, if the scheme predicts that MLP is available during execution, the instruction window is enlarged and the window resources are pipelined, thereby exploiting MLP. Conversely, if the scheme predicts that less MLP is available, that is, ILP is exploitable for improved performance, the instruction window is shrunk and the window resources are de-pipelined, thereby exploiting ILP. Our evaluation results using the SPEC2006 benchmark programs show that the proposed scheme achieves nearly the best performance possible with fixed-size resources. On average, our scheme realizes a performance improvement of 21% over that of a conventional processor, with additional cost of only 6% of the area of the conventional processor core or 3% of that of the entire processor chip. The evaluation results also show 8% better energy efficiency in terms of 1/EDP (energy-delay product).

  • Tuning GridFTP Pipelining, Concurrency and Parallelism Based on Historical Data

    Jangyoung KIM  

     
    LETTER-Information Network

      Pubricized:
    2014/07/28
      Vol:
    E97-D No:11
      Page(s):
    2963-2966

    This paper presents a prediction model based on historical data to achieve optimal values of pipelining, concurrency and parallelism (PCP) in GridFTP data transfers in Cloud systems. Setting the correct values for these three parameters is crucial in achieving high throughput in end-to-end data movement. However, predicting and setting the optimal values for these parameters is a challenging task, especially in shared and non-predictive network conditions. Several factors can affect the optimal values for these parameters such as the background network traffic, available bandwidth, Round-Trip Time (RTT), TCP buffer size, and file size. Existing models either fail to provide accurate predictions or come with very high prediction overheads. The author shows that new model based on historical data can achieve high accuracy with low overhead.

  • DRDet: Efficiently Making Data Races Deterministic

    Chen CHEN  Kai LU  Xiaoping WANG  Xu ZHOU  Zhendong WU  

     
    PAPER-Software Engineering

      Vol:
    E97-D No:10
      Page(s):
    2676-2684

    Strongly deterministic multithreading provides determinism for multithreaded programs even in the presence of data races. A common way to guarantee determinism for data races is to isolate threads by buffering shared memory accesses. Unfortunately, buffering all shared accesses is prohibitively costly. We propose an approach called DRDet to efficiently make data races deterministic. DRDet leverages the insight that, instead of buffering all shared memory accesses, it is sufficient to only buffer memory accesses involving data races. DRDet uses a sound data-race detector to detect all potential data races. These potential data races, along with all accesses which may access the same set of memory objects, are flagged as data-race-involved accesses. Unsurprisingly, the imprecision of static analyses makes a large fraction of shared accesses to be data-race-involved. DRDet employs two optimizations which aim at reducing the number of accesses to be sent to query alias analysis. We implement DRDet on CoreDet, a state-of-the-art deterministic multithreading system. Our empirical evaluation shows that DRDet reduces the overhead of CoreDet by an average of 1.6X, without weakening determinism and scalability.

  • Preventing Participation of Insincere Workers in Crowdsourcing by Using Pay-for-Performance Payments

    Shigeo MATSUBARA  Meile WANG  

     
    PAPER-Information Network

      Vol:
    E97-D No:9
      Page(s):
    2415-2422

    We propose a method for finding an appropriate setting of a pay-per-performance payment system to prevent participation of insincere workers in crowdsourcing. Crowdsourcing enables fast and low-cost accomplishment of tasks; however, insincere workers prevent the task requester from obtaining high-quality results. Instead of a fixed payment system, the pay-per-performance payment system is promising for excluding insincere workers. However, it is difficult to learn what settings are better, and a naive payment setting may cause unsatisfactory outcomes. To overcome these drawbacks, we propose a method for calculating the expected payments for sincere and insincere workers, and then clarifying the conditions in the payment setting in which sincere workers are willing to choose a task, while insincere workers are not willing to choose the task. We evaluated the proposed method by conducting several experiments on tweet labeling tasks in Amazon Mechanical Turk. The results suggest that the pay-per-performance system is useful for preventing participation of insincere workers.

  • Cross-Layering Optimization for Low Energy Consumption in Wireless Body Area Networks

    Yali WANG  Lan CHEN  Chao LYV  

     
    PAPER

      Vol:
    E97-B No:9
      Page(s):
    1808-1816

    Wireless body area networks (WBANs) have to work with low power and long lifetime to satisfy human biological safety requirements in e-health; therefore extremely low energy consumption is significant for WBANs. IEEE 802.15.6 standard has been published for wearable and implanted applications which provide communication technology requirements in WBANs. In this paper, the cross-layering optimization methodology is used to minimize the network energy consumption. Both the priority strategy and sleep mechanism in IEEE802.15.6 are considered. Macroscopic sleep model based on WBAN traffic priority and microscopic sleep model based on MAC structure are proposed. Then the network energy consumption optimization problem is solved by Lagrange dual method, the master problem are vertically decomposed into two sub problems in MAC and transport layers which are dealt with gradient method. Finally, a solution including self-adaption sleep mechanism and node rate controlling is proposed. The results of this paper indicate that the algorithm converges quickly and reduces the network energy consumption remarkably.

  • Practice and Evaluation of Pagelet-Based Client-Side Rendering Mechanism

    Hao HAN  Yinxing XUE  Keizo OYAMA  Yang LIU  

     
    PAPER-Software Engineering

      Vol:
    E97-D No:8
      Page(s):
    2067-2083

    The rendering mechanism plays an indispensable role in browser-based Web application. It generates active webpages dynamically and provides human-readable layout through template engines, which are used as a standard programming model to separate the business logic and data computations from the webpage presentation. The client-side rendering mechanism, owing to the advances of rich application technologies, has been widely adopted. The adoption of client side rendering brings not only various merits but also new problems. In this paper, we propose and construct “pagelet”, a segment-based template engine for developing flexible and extensible Web applications. By presenting principles, practice and usage experience of pagelet, we conduct a comprehensive analysis of possible advantages and disadvantages brought by client-side rendering mechanism from the viewpoints of both developers and end-users.

  • Analysis of Energy-Delay Trade-Off for Power-Saving Mechanism Specific to Request-and-Response-Based Applications

    Hyun-Ho CHOI  Jung-Ryun LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1422-1428

    We propose a power-saving mechanism (PSM) specific to request-and-response-based applications, which simply changes the order of the operating procedure of the legacy PSM by considering the attributes of the request-and-response delay. We numerically analyze the PSM with respect to the energy consumption and buffering delay and characterize this performance by employing a simple energy-delay trade-off (EDT) curve that is determined by the operating parameters. The resulting EDT curve clearly shows that the proposed PSM outperforms the legacy PSM.

  • Culture Based Preference for the Information Feeding Mechanism in Online Social Networks Open Access

    Arunee RATIKAN  Mikifumi SHIKIDA  

     
    PAPER

      Vol:
    E97-D No:4
      Page(s):
    705-713

    Online Social Networks (OSNs) have recently been playing an important role in communication. From the audience aspect, they enable audiences to get unlimited information via the information feeding mechanism (IFM), which is an important part of the OSNs. The audience relies on the quantity and quality of the information served by it. We found that existing IFMs can result in two problems: information overload and cultural ignorance. In this paper, we propose a new type of IFM that solves these problems. The advantage of our proposed IFM is that it can filter irrelevant information with consideration of audiences' culture by using the Naïve Bayes (NB) algorithm together with features and factors. It then dynamically serves interesting and important information based on the current situation and preference of the audience. This mechanism helps the audience to reduce the time spent in finding interesting information. It can be applied to other cultures, societies and businesses. In the near future, the audience will be provided with excellent, and less annoying, communication. Through our studies, we have found that our proposed IFM is most appropriate for Thai and some groups of Japanese audiences under the consideration of audiences' culture.

  • Performance Improvements on LR-WPANs over Interference from WLANs

    Ji-Hoon PARK  Byung-Seo KIM  

     
    LETTER-Information Network

      Vol:
    E97-D No:1
      Page(s):
    151-154

    To reduce perforamnce degradations of LR-WPANs due to interference from WLANs, this letter proposes a protocol to allow a piconet to switch an operating channel to an interference-free channel only for transmitting beacon frames. The proposed method does not only increase network performances because of hgh reliability of the beacon frames, but also increase overerall channel utilizations because of using even interfered-channels.

  • Magnetic Disturbance Detection Method for Ubiquitous Device

    Kensuke SAWADA  Shigenobu SASAKI  Shinichiro MORI  

     
    LETTER-Intelligent Transport System

      Vol:
    E96-A No:12
      Page(s):
    2745-2749

    Geomagnetic information is informative because it has the ability to detect information about orientation by way of a ubiquitous device. However, a magnetic disturbance easily influences geomagnetic information. The magnetic disturbance detection method is needed in order to use geomagnetic information. Firstly, in this paper, the availability of geomagnetic information in Japan is investigated by field measurement work. Then, a new magnetic disturbance detection method which is better than the conventional method is proposed. The basic function of the proposed method is tested in actual condition.

  • Fixed-Rate Resource Exchange for Multi-Operator Pico eNodeB

    Tomohiko MIMURA  Koji YAMAMOTO  Masahiro MORIKURA  Ayako IWATA  Takashi TAMURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:11
      Page(s):
    2913-2922

    In this paper, we introduce a new multi-operator pico eNodeB (eNB) concept for cellular networks. It is expected that mobile data offloading will be performed effectively after installing the pico eNBs in cellular networks, owing to the rapid increase in mobile traffic. However, when several different operators independently install the pico eNBs, high costs and large amounts of space will be required for the installation. In addition, when several different operators accommodate their own user equipments (UEs) in the pico eNBs, not enough UEs can be accommodated. This is because the UEs are not evenly distributed in the coverage area of the pico eNBs. In this paper, the accommodation of the UEs of different operators in co-sited pico eNB is discussed as one of the solutions to these problems. For the accommodation of the UEs of different operators, wireless resources should be allocated to them. However, when each operator independently controls his wireless resources, the operator is not provided with an incentive to accommodate the UEs of the other operators in his pico eNBs. For this reason, an appropriate rule for appropriate allocation of the wireless resources to the UEs of different operators should be established. In this paper, by using the concepts of game theory and mechanism design, a resource allocation rule where each operator is provided with an incentive to allocate the wireless resources to the UEs of different operators is proposed. With the proposed rule, each operator is not required to disclose the control information like link quality and the number of UEs to the other operators. Furthermore, the results of a throughput performance evaluation confirm that the proposed scheme improves the total throughput as compared with individual resource allocation.

  • Synchronization of Two Different Unified Chaotic Systems with Unknown Mismatched Parameters via Sum of Squares Method

    Cheol-Joong KIM  Dongkyoung CHWA  

     
    PAPER-Nonlinear Problems

      Vol:
    E96-A No:9
      Page(s):
    1840-1847

    This paper proposes the synchronization control method for two different unified chaotic systems with unknown mismatched parameters using sum of squares method. Previously, feedback-linearizing and stabilization terms were used in the controller for the synchronization problem. However, they used just a constant matrix as a stabilization control gain, whose performance is shown to be valid only for a linear model. Thus, we propose the novel control method for the synchronization of the two different unified chaotic systems with unknown mismatched parameters via sum of squares method. We design the stabilization control input which is of the polynomial form by sum of squares method and also the adaptive law for the estimation of the unknown mismatched parameter between the master and slave systems. Since we can use the polynomial control input which is dependent on the system states as the stabilization controller, the proposed method can have better performance than the previous methods. Numerical simulations for both uni-directional and bi-directional chaotic systems show the validity and advantage of the proposed method.

  • The Contact Resistance Performance of Gold Coated Carbon-Nanotube Surfaces under Low Current Switching Open Access

    John W. McBRIDE  Chamaporn CHIANRABUTRA  Liudi JIANG  Suan Hui PU  

     
    INVITED PAPER

      Vol:
    E96-C No:9
      Page(s):
    1097-1103

    Multi-Walled CNT (MWCNT) are synthesized on a silicon wafer and sputter coated with a gold film. The planar surfaces are mounted on the tip of a piezo-electric actuator and mated with a gold coated hemispherical surface to form an electrical contact. These switching contacts are tested under conditions typical of MEMS relay applications; 4V, with a static contact force of 1mN, at a low current between 20-50mA. The failure of the switch is identified by the evolution of contact resistance which is monitored throughout the switching cycles. The results show that the contact resistance can be stable for up to 120 million switching cycles, which are 106 orders of higher than state-of-the-art pure gold contact. Bouncing behavior was also observed in each switching cycle. The failing mechanism was also studied in relation to the contact surface changes. It was observed that the contact surfaces undergo a transfer process over the switching life time, ultimately leading to switching failure the number of bounces is also related to the fine transfer failure mechanism.

121-140hit(359hit)