The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ITU(256hit)

181-200hit(256hit)

  • Quantum Algorithms for Intersection and Proximity Problems

    Kunihiko SADAKANE  Norito SUGAWARA  Takeshi TOKUYAMA  

     
    PAPER

      Vol:
    E86-A No:5
      Page(s):
    1113-1119

    We discuss applications of quantum computation to geometric data processing. Especially, we give efficient algorithms for intersection problems and proximity problems. Our algorithms are based on Brassard et al. 's amplitude amplification method, and analogous to Buhrman et al. 's algorithm for element distinctness. Revealing these applications is useful for classifying geometric problems, and also emphasizing potential usefulness of quantum computation in geometric data processing. Thus, the results will promote research and development of quantum computers and algorithms.

  • Linear Complexities of Periodic Sequences Obtained from Sequences over Z4 and Z8 by One-Symbol Substitution

    Tsutomu MORIUCHI  Satoshi UEHARA  Takayasu KAIDA  Kyoki IMAMURA  

     
    PAPER-Information Theory

      Vol:
    E86-A No:5
      Page(s):
    1285-1293

    In this paper, we will show that some families of periodic sequences over Z4 and Z8 with period multiple of 2r-1 generated by r-th degree basic primitive polynomials assorted by the root of each polynomial, and give the exact distribution of sequences for each family. We also point out such an instability as an extreme increase of their linear complexities for the periodic sequences by one-symbol substitution, i.e., from the minimum value to the maximum value, for all the substitutions except one.

  • Robust Speech Features Based on LPC Using Weighted Arcsin Transform

    Wei-Wen HUNG  

     
    LETTER-Speech and Hearing

      Vol:
    E86-D No:2
      Page(s):
    340-343

    To increase the discriminating ability of the speech feature based on linear predictive coding (LPC) and increase its noise robustness, an SNR-dependent arcsin transform is applied to the autocorrelation sequence (ACS) of each analysis frame in a speech signal. Moreover, each component in the ACS is also weighted by the normalized reciprocal of the average magnitude difference function (AMDF) for emphasizing its peak structure. Experimental results for the task of Mandarin digit recognition indicate that the LPC speech feature employing the proposed scheme is more robust than some widely used LPC-based approaches over a wide range of SNR values.

  • Comparative Study of Head-Disk Spacing Measurement Techniques between Optical Method and Various In-Situ Methods

    Sheng-Bin HU  Zhi-Min YUAN  Wei ZHANG  Bo LIU  Lei WAN  Rui XIAN  

     
    PAPER

      Vol:
    E85-C No:10
      Page(s):
    1784-1788

    The interaction between slider, lubricant and disk surface is becoming the most crucial robustness concern of advanced data storage systems. This paper reports comparative studies among various techniques for the measurement of head-disk spacing. It is noticed that the triple harmonic method gives a reading much closer to the reading of the head-disk spacing obtained optically at on-track center case, comparing with the PW50 method. Specially prepared disks with different carbon overcoat thickness (6.5 nm, 11 nm, 16 nm and 22 nm) were also used to study the reliability and repeatability of the triple harmonic method.

  • Write Linear Density Limit in Longitudinal Thin Film Media

    Jian LI  Xiaobing LIANG  Dan WEI  

     
    PAPER

      Vol:
    E85-C No:10
      Page(s):
    1761-1765

    Write linear density limit is defined to analyze the magnetic recording process in computer hard disk drives at extremely high recording densities. The digital data with pseudo random sequences are recorded numerically in longitudinal media at different densities by a micromagnetic simulation model. A thin film write head and an ideal GMR read head are utilized in the record and read-back process, respectively. A novel method has been utilized to study the write linear density limit: the simulated read back voltage and the respected linear superposed pulses are compared to find the distortion in the record process. When a severe distortion shows up, the corresponding linear density is considered as the write linear density limit. By the novel method, the write linear density limit is analyzed with different parameters of the recording media.

  • Combining Recurrent Neural Networks with Self-Organizing Map for Channel Equalization

    Xiaoqiu WANG  Hua LIN  Jianming LU  Takashi YAHAGI  

     
    PAPER-Communication Devices/Circuits

      Vol:
    E85-B No:10
      Page(s):
    2227-2235

    Recently, neural networks (NNs) have been extensively applied to many signal processing problem due to their robust abilities to form complex decision regions. In particular, neural networks add flexibility to the design of equalizers for digital communication systems. Recurrent neural network (RNN) is a kind of neural network with one or more feedback loops, whereas self-organizing map (SOM) is characterized by the formation of a topographic map of the input patterns in which the spatial locations (i.e., coordinates) of the neurons in the lattice are indicative of intrinsic statistical features contained in the input patterns. In this paper, we propose a novel receiver structure by combining adaptive RNN equalizer with a SOM detector under serious ISI and nonlinear distortion in QAM system. According to the theoretical analysis and computer simulation results, the performance of the proposed scheme is shown to be quite effective in channel equalization under nonlinear distortion.

  • Joint System of Terrestrial and High Altitude Platform Station (HAPS) Cellular for W-CDMA Mobile Communications

    Shinya MASUMURA  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E85-B No:10
      Page(s):
    2051-2058

    The plan of High Altitude Platform Station (HAPS) is considered as a revolutionary wireless system plan with several economic and technological advantages over both space- or ground-based counterparts. In this paper, we propose a joint system of terrestrial and HAPS cellular for Wideband-CDMA mobile communication. This system makes the conventional terrestrial W-CDMA cellular area smaller and the remainder area covered by HAPS to increase the total capacity. Furthermore in down link channel, we introduce the polarized wave and doughnut-like radiation. However, in the proposed system, the performance would be dependent on the terminal position especially near the boundary of doughnut-like cell zone. To overcome this, site diversity that uses both signals from terrestrial Base Station and HAPS Base Station is also introduced. To confirm the availability of the proposed system, we evaluate the system performance by computer simulation.

  • Fast Capture Algorithm of Initial Attitude for Spacecraft Using Reaction Wheels

    Hyunwoo LEE  Dong-Jo PARK  

     
    PAPER-Systems and Control

      Vol:
    E85-A No:10
      Page(s):
    2311-2317

    A fast capture algorithm of the initial attitude is proposed for the spacecraft using reaction wheels. This algorithm is composed of two steps. The first step deals with absorption of the initial angular momentum of the spacecraft into the reaction wheels and the second step a rest-to-reset large angle maneuver for sun tracking. A criterion of the initial attitude capture and a controller for the fast large angle maneuver method are presented under considering constraints of the reaction wheels. Simulation results show that the proposed algorithm has several advantages of the initial attitude capture and fast large angle maneuver. This algorithm can be applied to the near minimum time rotation control of the spacecraft.

  • An Improved 3-Dimensional Mobile Location Method Using Volume Measurements of Tetrahedron

    Qun WAN  Ying-Ning PENG  

     
    PAPER-Sensing

      Vol:
    E85-B No:9
      Page(s):
    1817-1823

    Since the deployment of base stations (BS's) is far from optimum in 3-dimensional (3-D) space, i.e., the vertical baseline is relatively shorter than the planar baseline, the geometric degradation of precision of the altitude estimate is larger than that of the planar location. This paper considers the problem of 3-D range location and attempt to improve the altitude estimate. We first use a volume formula of tetrahedron to transform the range measurements to the volume measurements, then a novel pseudo-linear solution is proposed based on a linear relationship between the rectangular and the volume coordinates. Theory analysis and numerical examples are included to show the improved accuracy of the altitude estimate of mobile location. Finally, an improved estimate of 3-D mobile location is given by solving a set of augmented linear equations.

  • Log-Normal, Log-Weibull and K-Distributed Sea Clutter

    Shuji SAYAMA  Matsuo SEKINE  

     
    PAPER-Sensing

      Vol:
    E85-B No:7
      Page(s):
    1375-1381

    We observed the log normal, log-Weibull and K-distributed sea-clutter from high sea state 7 with an X-band radar for grazing angles between 3.1 and 17.5. To determine the sea-clutter amplitude statistics, we introduced the Akaike Information Criterion (AIC), which is more rigorous fit of the distribution to the data than the least-squares method.

  • Noise Suppression with High Speech Quality Based on Weighted Noise Estimation and MMSE STSA

    Masanori KATO  Akihiko SUGIYAMA  Masahiro SERIZAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E85-A No:7
      Page(s):
    1710-1718

    A noise suppression algorithm with high speech quality based on weighted noise estimation and MMSE STSA is proposed. The proposed algorithm continuously updates the estimated noise by weighted noisy speech in accordance with an estimated SNR. The spectral gain is modified with the estimated SNR so that it can better utilize the improvement in noise estimation. With a better noise estimate, a more correct SNR is obtained resulting in the enhanced speech with low distortion. Subjective evaluation results show that five-grade mean opinion scores of the new algorithm with and without a speech codec are improved by as much as 0.35 and 0.40 respectively, compared with either the original MMSE STSA or the EVRC noise suppression algorithm.

  • Programmable Composite Noise Generator (P-CNG)--As Class A Noise Simulator and Its Application to Opinion Test on TV Picture Degradation--

    Motoshi TANAKA  Kei SASAJIMA  Hiroshi INOUE  Tasuku TAKAGI  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E85-B No:7
      Page(s):
    1352-1359

    We have recently developed a programmable composite noise generator (P-CNG) which can easily control noise parameters such as average power, time-based amplitude probability distribution (APD), crossing rate distribution, occurrence frequency distribution and burst duration. Two applications of the P-CNG are demonstrated to show its usefulness. For the first application, Middleton's Class A noise is simulated. A method of setting parameters for Class A noise is demonstrated. The APD of P-CNG output is in good agreement with that of true Class A noise. In the second application, the P-CNG is used for subjective evaluation test (opinion test) of TV picture degradation. Five simple composite noise models with two kinds of APD are used. Other parameters such as average power are kept constant. Experimental results show that the envelope and APD of composite noises do not greatly influence the subjective evaluation. Finally the capabilities of the P-CNG are shown.

  • A Low-Complexity and High-Resolution Algorithm for the Magnitude Approximation of Complex Numbers

    Luca FANUCCI  Massimo ROVINI  

     
    LETTER-VLSI Design Technology and CAD

      Vol:
    E85-A No:7
      Page(s):
    1766-1769

    In this paper a low-complexity and high-resolution algorithm to estimate the magnitude of complex numbers is presented. Starting from a review of previous art, the new algorithm has been derived to improve precision performance without any penalty in hardware complexity. As a case example, a semi-custom VLSI implementation for 10 bit 2's complement input data has been performed. A mean square error and mean error performance improvement of nearly one order of magnitude has been demonstrated for an hardware complexity increase of roughly 34% with respect to previously presented solutions.

  • Vector Signal Processing for 60-120 GHz Gas Absorption Measurement

    Toshitatsu SUZUKI  Hidenori SASANUMA  Masashi SANO  Kenichi SHIODA  Yasuo WATANABE  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1900-1904

    This study is intended to realize an in-situ gas sensor based upon the principle of millimeter/submillimeter wave spectroscopy. In-situ gas sensor will be attractive because of gas selectivity, multiple parametric measurement such as gas temperature, pressure and density, and of the in-situ measurement capability. One of the major technical problem to be solved is to develop an instrument accurate enough to discern the spectrum change due to the variation of parameters such as temperature. In this paper a proposed gas absorption measurement system is investigated, which schematically consists of Fabry-Perot type gas cell for effective long path length, and vector signal processing to reject leak signal coupled between resonator input and output ports so as to achieve precise absorption measurement. Also included is an parametric study of oxygen absorption characteristics, which is served as the predicted value in the evaluation of the instrument. The experiment at 60 GHz and 120 GHz bands using oxygen demonstrates the effectiveness of the current system configuration.

  • An Adaptive Rate Communication System Based on the N-MSK Modulation Technique

    Toma JAVORNIK  Gorazd KANDUS  

     
    PAPER-Wireless Communication Technology

      Vol:
    E84-B No:11
      Page(s):
    2946-2955

    An adaptive rate communication system based on the N-MSK modulation technique is described. Two examples of the system using a 2-MSK adaptive modulation scheme and a 4-MSK adaptive modulation scheme are presented and analysed in slow fading channel. The channel attenuation obeys either Rayleigh or lognormal distribution. The proposed adaptive rate communication system is able to track slow variations of channel attenuation and the average system throughput is therefore increased at a given BER.

  • Amplitude Banded RLS Approach to Time Variant Channel Equalization

    Tetsuya SHIMAMURA  Colin F. N. COWAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E84-A No:11
      Page(s):
    2946-2949

    This paper proposes a non-linear adaptive algorithm, the amplitude banded RLS (ABRLS) algorithm, as an adaptation procedure for time variant channel equalizers. In the ABRLS algorithm, a coefficient matrix is updated based on the amplitude level of the received sequence. To enhance the capability of tracking for the ABRLS algorithm, a parallel adaptation scheme is utilized which involves the structures of decision feedback equalizer (DFE). Computer simulations demonstrate that the novel ABRLS based equalizer provides a significant improvement relative to the conventional RLS DFE on a rapidly time variant communication channel.

  • System-MSPA Design of H.263+ Video Encoder/Decoder LSI for Videotelephony Applications

    Chawalit HONSAWEK  Kazuhito ITO  Tomohiko OHTSUKA  Trio ADIONO  Dongju LI  Tsuyoshi ISSHIKI  Hiroaki KUNIEDA  

     
    PAPER-VLSI Design

      Vol:
    E84-A No:11
      Page(s):
    2614-2622

    In this paper, a LSI design for video encoder and decoder for H.263+ video compression is presented. LSI operates under clock frequency of 27 MHz to compress QCIF (176144 pixels) at the frame rate of 30 frame per second. The core size is 4.6 4.6 mm2 in a 0.35 µm process. The architecture is based on bus connected heterogeneous dedicated modules, named as System-MSPA architecture. It employs the fast and small-chip-area dedicated modules in lower level and controls them by employing the slow and flexible programmable device and an external DRAM. Design results in success to achieve real time encoder in quite compact size without losing flexibility and expand ability. Real time emulation and easy test capability with external PC is also implemented.

  • Skew Angle Effects on Disk Recording Performance at High Recording Densities

    Dan WEI  

     
    PAPER

      Vol:
    E84-C No:9
      Page(s):
    1171-1175

    Skew angle effects on the transition noise are analyzed in the longitudinal disk media by micromagnetic simulations at area densities from 14.3 Gb/in2 to 31.5 Gb/in2. The transition noise, including the peak, width and jitter noise, is the dominant noise in ultra-high density disk recording systems. An isotropic medium and an oriented medium, with a fixed grain size of 135 and a coercivity of 2900 Oe, are chosen for the noise analysis. The peak noise is studied by the distribution of the peak magnetization amplitude Mp in each bit. The transition a-parameter is no longer the value as given in the William-Comstock approximation. It is found that the transition noise is highly dependent on both the linear den sity and the skew angle, where the bit length and the grain size are on the same order. In both media, the medium noise increases severely when the skew angle is above 10 degrees.

  • Detection of Nonlinearly Distorted M-ary QAM Signals Using Self-Organizing Map

    Xiaoqiu WANG  Hua LIN  Jianming LU  Takashi YAHAGI  

     
    PAPER-Applications of Signal Processing

      Vol:
    E84-A No:8
      Page(s):
    1969-1976

    Detection of nonlinearly distorted signals is an essential problem in telecommunications. Recently, neural network combined conventional equalizer has been used to improve the performance especially in compensating for nonlinear distortions. In this paper, the self-organizing map (SOM) combined with the conventional symbol-by-symbol detector is used as an adaptive detector after the output of the decision feedback equalizer (DFE), which updates the decision levels to follow up the nonlinear distortions. In the proposed scheme, we use the box distance to define the neighborhood of the winning neuron of the SOM algorithm. The error performance has been investigated in both 16 QAM and 64 QAM systems with nonlinear distortions. Simulation results have shown that the system performance is remarkably improved by using SOM detector compared with the conventional DFE scheme.

  • Polarization Insensitive SOA-PLC Hybrid Integrated Michelson Interferometric Wavelength Converter and Its Application to DWDM Networks

    Rieko SATO  Toshio ITO  Katsuaki MAGARI  Akira OKADA  Manabu OGUMA  Yasumasa SUZAKI  Yoshihiro KAWAGUCHI  Yasuhiro SUZUKI  Akira HIMENO  Noboru ISHIHARA  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-C No:5
      Page(s):
    571-578

    We fabricated a 1.55-µm polarization insensitive Michelson interferometric wavelength converter (MI-WC). The MI-WC consists of a two-channel spot-size converter integrated semiconductor optical amplifier (SS-SOA) on a planar lightwave circuit (PLC) platform. Clear eye opening and no power penalty in the back-to-back condition were obtained at 10 Gb/s modulation. We also confirmed the polarization insensitive operation on the input signal. Moreover, for an application of the MI-WC to DWDM networks, we demonstrated the selective wavelength conversion of 2.5 G/s optical packets from Fabry-Perot laser diode (FP-LD) light to four ITU-T grid wavelengths. We confirmed the good feasibility of this technique for use in DWDM networks. The wavelength conversion we describe here is indispensable for future all-optical networks, in which optical signal sources without wavelength control will be used at user-end terminals.

181-200hit(256hit)