The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] LER(1184hit)

741-760hit(1184hit)

  • Dependability Evaluation with Fault Injection Experiments

    Piotr GAWKOWSKI  Janusz SOSNOWSKI  

     
    PAPER-Verification and Dependability Analysis

      Vol:
    E86-D No:12
      Page(s):
    2642-2649

    In the paper we evaluate program susceptibility to hardware faults using fault injector. The performed experiments cover many applications with different features. The effectiveness of software techniques improving system dependability is analyzed. Practical aspects of embedding these techniques in real programs are discussed. They have significant impact on the final fault robustness.

  • A Novel Learning Algorithm Which Makes Multilayer Neural Networks Multiple-Weight-Fault Tolerant

    Itsuo TAKANAMI  Yasuhiro OYAMA  

     
    PAPER-Dependable Systems

      Vol:
    E86-D No:12
      Page(s):
    2536-2543

    We propose an efficient algorithm for making multi-layered neural networks (MLN) fault-tolerant to all multiple weight faults in a multi-dimensional interval by injecting intentionally two extreme multi-dimensional values in the interval into the weights of the selected multiple links in a learning phase. The degree of fault-tolerance to a multiple weight fault is measured by the number of essential multiple links. First, we analytically discuss how to choose effectively the multiple links to be injected, and present a learning algorithm for making MLNs fault tolerant to all multiple (i.e., simultaneous) faults in the interval defined by two multi-dimensional extreme points. Then it is proved that after the learning algorithm successfully finishes, MLNs become fault tolerant to all multiple faults in the interval. It is also shown that the time in a weight modification cycle depends little on multiplicity of faults k for small k. These are confirmed by simulation.

  • A Transparent Transient Faults Tolerance Mechanism for Superscalar Processors

    Toshinori SATO  

     
    PAPER-Dependable Systems

      Vol:
    E86-D No:12
      Page(s):
    2508-2516

    In this paper, we propose a fault-tolerance mechanism for microprocessors, which detects transient faults and recovers from them. The investigation of fault-tolerance techniques for microprocessors is driven by two issues: One regards deep submicron fabrication technologies. Future semiconductor technologies could become more susceptible to alpha particles and other cosmic radiation. The other is the increasing popularity of mobile platforms. Cellular telephones are currently used for applications which are critical to our financial security, such as mobile banking, mobile trading, and making airline ticket reservations. Such applications demand that computer systems work correctly. In light of this, we propose a mechanism which is based on an instruction reissue technique for incorrect data speculation recovery and utilizes time redundancy, and evaluate our proposal using a timing simulator.

  • A Three-tier Active Replication Protocol for Large Scale Distributed Systems

    Carlo MARCHETTI  Sara Tucci PIERGIOVANNI  Roberto BALDONI  

     
    PAPER-Dependable Software

      Vol:
    E86-D No:12
      Page(s):
    2544-2552

    The deployment of server replicas of a service across an asynchronous distributed system (e.g., Internet) is a real practical challenge. This target cannot be indeed achieved by classical software replication techniques (e.g., passive and active replication) as these techniques usually rely on group communication toolkits that require server replicas to run over a partially synchronous distributed system to solve the underlying agreement problem. This paper proposes a three-tier architecture for software replication that encapsulates the need of partial synchrony in a specific software component of a mid-tier to free replicas and clients from the need of underlying partial synchrony assumptions. Then we propose how to specialize the mid-tier in order to manage active replication of server replicas.

  • An Algorithm for Node-to-Set Disjoint Paths Problem in Burnt Pancake Graphs

    Keiichi KANEKO  

     
    PAPER-Dependable Communication

      Vol:
    E86-D No:12
      Page(s):
    2588-2594

    A burnt pancake graph is a variant of Cayley graphs and its topology is suitable for massively parallel systems. However, for a burnt pancake graph, there is much room for further research. Hence, in this study, we focus on n-burnt pancake graphs and propose an algorithm to obtain n disjoint paths from a source node to n destination nodes in polynomial order time of n, n being the degree of the graph. In addition, we estimate the time complexity of the algorithm and the sum of path lengths. We also give a proof of correctness of the algorithm. Moreover, we report the results of computer simulation to evaluate the average performance of the algorithm.

  • An Interference Cancellation Scheme for OFDM Using Adaptive Algorithm

    Mitsuru UESUGI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:11
      Page(s):
    3182-3191

    OFDM is a good scheme to transmit high rate data under a multi-path environment. With a sufficiently long guard interval (GI), it is possible to totally eliminate interference between symbols or carriers with OFDM. However, long guard intervals reduce the spectrum efficiency of OFDM. Thus, shortening the guard interval as much as possible is highly desirable. As short guard intervals will usually result in interference in an OFDM system, an interference canceller would be necessary to enable the use of short guard intervals without unduly degrading system performance. This paper presents a possible adaptive interference cancellation scheme for OFDM to help attain this objective.

  • Fault-Tolerant Execution of Collaborating Mobile Agents

    Taesoon PARK  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Vol:
    E86-A No:11
      Page(s):
    2897-2900

    Fault-tolerant execution of a mobile agent is an important design issue to build a reliable mobile agent system. Several fault-tolerant schemes for a single agent system have been proposed, however, there has been little research result on the multi-agent system. For the cooperating mobile agents, fault-tolerant schemes should consider the inter-agent dependency as well as the mobility; and try to localize the effect of a failure. In this paper, we investigate properties of inter-agent dependency and agent mobility; and then characterize rollback propagation caused by the dependency and the mobility. We then suggest some schemes to localize rollback propagation.

  • High-Resolution Beam Profiler for Engineering Laterally-Grown Grain Morphology

    Masayuki JYUMONJI  Yoshinobu KIMURA  Masato HIRAMATSU  Yukio TANIGUCHI  Masakiyo MATSUMURA  

     
    LETTER

      Vol:
    E86-C No:11
      Page(s):
    2275-2277

    A two-dimensional laser beam profiler has been developed that can measure the intensity distribution on a sample surface of a single-shot of an excimer-laser light beam from not only the macroscopic viewpoint, but also the microscopic viewpoint, which is important to excimer-laser triggered lateral large-grain growth of Si. A resolution as fine as 0.4 µm was obtained with a field of view of as large as 30 µm 30 µm. The effects of homogenizers, phase-shifters, and their combination on beam profiles were quantitatively investigated by using this apparatus. The relationship between the microscopic beam profile and the surface morphology of laterally grown grains was also examined.

  • The Performance Modeling Application of SIP-T Signaling System Based on Two-Class Priority Queueing Process in Carrier Class VoIP Network

    Peir-Yuan WANG  Jung-Shyr WU  

     
    PAPER

      Vol:
    E86-D No:11
      Page(s):
    2271-2290

    This paper presents the performance modeling application of SIP-T (Session Initiation Protocol for Telephones) signaling system based on two-class priority queueing process in carrier class VoIP (Voice over IP) network. The SIP-T signaling system defined in IETF (Internet Engineering Task Force) is a mechanism that uses SIP (Session Initiation Protocol) to facilitate the interconnection of existing PSTN (Public Switched Telephone Network) with carrier class VoIP network. One of the greatest challenges in the migration from PSTN toward NGN (Next Generation Networks) is to build a carrier class VoIP network that preserves the ubiquity, quality, and reliability of PSTN services while allowing the greatest flexibility for use of new VoIP technology. Based on IETF, the SIP-T signaling system not only promises scalability, flexibility, and interoperability with PSTN but also provides call control function of MGC (Media Gateway Controller) to set up, tear down, and manage VoIP calls in carrier class VoIP network. This paper presents the two class priority queueing model, performance analysis, and simulation of SIP-T signaling system in carrier class VoIP network focused on toll by-pass or tandem by-pass of PSTN. In this paper, we analyze the average queueing length, the mean of queueing delay, and the variance of queueing delay of SIP-T signaling system that are the major performance evaluation parameters for improving QoS (Quality of Service) and system performance of MGC in carrier class VoIP network. A mathematical model of the M/G/1 queue with two-class non-preemptive priority assignment is proposed to represent SIP-T signaling system. Then, the formulae of average queueing length, queueing delay, and delay variation for the non-preemptive priority queue are expressed respectively. Several significant numerical examples of average queueing length, queueing delay, and delay variation are presented as well. Finally, the two-class priority queueing model and performance analysis of SIP-T signaling system are shown the accuracy and robustness after the comparison between theoretical estimates and simulation results.

  • Reduced Complexity Iterative Decoding Using a Sub-Optimum Minimum Distance Search

    Jun ASATANI  Takuya KOUMOTO  Kenichi TOMITA  Tadao KASAMI  

     
    LETTER-Coding Theory

      Vol:
    E86-A No:10
      Page(s):
    2596-2600

    In this letter, we propose (1) a new sub-optimum minimum distance search (sub-MDS), whose search complexity is reduced considerably compared with optimum MDSs and (2) a termination criterion, called near optimality condition, to reduce the average number of decoding iterations with little degradation of error performance for the proposed decoding using sub-MDS iteratively. Consequently, the decoding algorithm can be applied to longer codes with feasible complexity. Simulation results for several Reed-Muller (RM) codes of lengths 256 and 512 are given.

  • A Kalman Filter Merging CV and Kinetic Acceleration Estimation Model Using Mode Probabilities

    Masataka HASHIRAO  Tetsuya KAWASE  Iwao SASASE  

     
    LETTER-Navigation, Guidance and Control Systems

      Vol:
    E86-B No:10
      Page(s):
    3147-3151

    For radar tracking, the α-β filter and the Kalman filter, both of which do not require large computational requirements, have been widely utilized. However these filters cannot track a maneuvering target accurately. In recent years, the IMM (Interactive Multiple Model) algorithm has been proposed. The IMM is expected to reduce tracking errors for both non-maneuvering and maneuvering target. However, the IMM requires heavy computational burden, because it utilizes multiple Kalman filters in parallel. On the other hand, the α-β filter with an acceleration term which can estimate maneuver acceleration from the past target estimated positions using the kinetic model, has been proposed. This filter is not available for tracking targets under clutter environment, since it does not calculate the covariance matrix which is needed for gate setting. In this paper, we apply the acceleration estimate to the Kalman filter, and propose the hybrid Kalman filter with a constant-velocity filter and an acceleration estimation filter, and it integrates the outputs of two filters using the normalized distance of the prediction error of each filter. The computational requirement of the proposed filter is smaller than that of the IMM since the proposed filter consists of only two Kalman based filters. The proposed method can prevent deteriorating tracking accuracy by reducing the risk of maneuver misdetection when a target maneuvers. We evaluate the performance of the proposed filter by computer simulation, and show the effectiveness of the proposed filter, comparing with the conventional Kalman filter and the two-stage Kalman filter.

  • QoS Certification of Real-Time Distributed Computing Systems: Issues and Promising Approaches

    K.H. (Kane) KIM  

     
    INVITED PAPER

      Vol:
    E86-D No:10
      Page(s):
    2077-2086

    The general public is expected to demand in not too distant future instituting more stringent certification procedures for computing parts of traditional and new-generation safety-critical application systems. Such quality-of-service (QoS) certification processes will not and can not rely solely on the testing approach. Design-time guaranteeing of timely service capabilities of various subsystems is an inevitable part of such processes. Although some promising developments in this area have been occurring in recent years, the technological challenges yet to be overcome are enormous. This paper is a summary of the author's perspective on the remaining challenges and promising directions for tackling them.

  • A Low-Complexity Multi-User CDMA Receiver with Blind Channel Estimation and Partially Adaptive MAI Suppression

    Gau-Joe LIN  Ta-Sung LEE  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:9
      Page(s):
    2600-2609

    A low complexity multi-user receiver with blind channel estimation and multiple access interference (MAI) suppression is proposed for a CDMA system under multipath fading and frequency offset. The design of the receiver involves the following procedure. First, a method of joint MAI suppression and channel estimation is developed based on the generalized sidelobe canceller (GSC) technique. In particular, channel estimates are obtained blindly in the form of the effective composite signature vectors (CSV) of the users. Second, a low-complexity partially adaptive (PA) realization of the receiver is proposed which incorporates reduced-rank processing based on the information of multi-user CSV's. By a judiciously designed decorrelating procedure, a new PA receiver is obtained with a much lower complexity. Finally, pilot symbols assisted frequency offset estimation and channel gain compensation give the estimate of users' symbols. Further performance enhancement is achieved by a decision aided scheme in which the signal is reconstructed and subtracted from the receiver input data, leading to significantly faster convergence. The proposed receiver is shown to be robust to multipath fading and frequency offset, and achieves nearly the same performance of the optimal maximum SINR and MMSE receivers with a much lower overhead for pilot symbols.

  • Efficient Loop Partitioning for Parallel Codes of Irregular Scientific Computations

    Minyi GUO  

     
    PAPER-Software Systems

      Vol:
    E86-D No:9
      Page(s):
    1825-1834

    In most cases of distributed memory computations, node programs are executed on processors according to the owner computes rule. However, owner computes rule is not best suited for irregular application codes. In irregular application codes, use of indirection in accessing left hand side array makes it difficult to partition the loop iterations, and because of use of indirection in accessing right hand side elements, we may reduce total communication by using heuristics other than owner computes rule. In this paper, we propose a communication cost reduction computes rule for irregular loop partitioning, called least communication computes rule. We partition a loop iteration to a processor on which the minimal communication cost is ensured when executing that iteration. Then, after all iterations are partitioned into various processors, we give global vs. local data transformation rule, indirection arrays remapping and communication optimization methods. The experimental results show that, in most cases, our approaches achieved better performance than other loop partitioning rules.

  • An Interference-Canceller-Aided Code Acquisition Scheme for DS-CDMA Systems with Interference Cancellation

    Jong Bin LEE  Seong Keun OH  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:9
      Page(s):
    2785-2787

    We propose an interference-canceller-aided (ICA) code timing acquisition scheme, code acquisition in short subsequently, for initial synchronization of direct sequence-code division multiple access (DS-CDMA) systems with interference cancellation (IC). The scheme removes completely or partially multiple access interference (MAI) due to the already-synchronized users from the received signal prior to code acquisition of a desired user. Code acquisition is then performed using the MAI-reduced signal. We compare the ICA code acquisition scheme with the conventional non-ICA scheme in terms of the probability of correct acquisition and the code timing accuracy. Simulation results shows that the proposed scheme can accommodate many more users than the conventional one and provide reliable code timing estimates even under many more interfering users.

  • Parallel Molecular Dynamics in a Parallelizing SML Compiler

    Norman SCAIFE  Ryoko HAYASHI  Susumu HORIGUCHI  

     
    PAPER-Software Systems and Technologies

      Vol:
    E86-D No:9
      Page(s):
    1569-1576

    We have constructed a parallelizing compiler for Standard ML (SML) based upon algorithmic skeletons. We present an implementation of a Parallel Molecular Dynamics (PMD) simulation in order to compare our functional approach with a traditional imperative approach. Although we present performance data, the principal benefits from our approach are in the modularity of the code and the ease of programming. Extant FORTRAN90 code for an O(N 2) algorithm is translated, firstly into imperative SML and then into purely functional SML which is then parallelized. The ease of programming and the performance of the FORTRAN90 and SML code are compared. Modest parallel performance is obtained from the parallel SML but with a much slower sequential execution time compared to the FORTRAN90. We then improve the implementation with a ring topology implementation which gives much closer performance to the FORTRAN90 implementation.

  • A New Doppler Spread Estimation Using FFT

    Goo-Hyun PARK  Daesik HONG  Chang-Eon KANG  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:9
      Page(s):
    2799-2803

    In this letter, a novel maximum Doppler spread estimation algorithm for mobile communication systems is proposed. The proposed method uses an average power spectrum of the received signal. The fast Fourier transform (FFT) of received pilot signal, which is related with the maximum Doppler frequency is used for obtaining an instantaneous power spectrum. The proposed algorithm shows a good performance over wide Doppler frequency in low signal-to-noise ratio (SNR<10 dB). Especially, in the proposed method, any other channel information such as SNR is not required.

  • Optimum Design of Broadband Multisection Coupled-Line Couplers with Arbitrary Coupling and Impedance Matching

    Homayoon ORAIZI  Gholam-Reza GABARANZAD GHADIM  

     
    PAPER-Antennas and Propagation

      Vol:
    E86-B No:9
      Page(s):
    2709-2719

    In this paper the method of least squares is employed to design an axially symmetric contradirectional multisection coupled - line coupler together with the impedance matching of real generator and load impedances. An error function is constructed for the required coupling (C) based on the squared magnitude of the ratio of the coupler voltage to that at the incident port. Another algorithm based on the reflected and transmitted wave amplitudes is developed by the method of least squares for the design of a coupled - line coupler with impedance matching of different input and output complex impedances and arbitrary coupling and length. The error functions are minimized to determine the coupler geometry, namely the normalized strip conductor widths (u=w/h) and separation (g=s/h) and the coupler length, where h is the substrate thickness. A procedure is presented to provide the initial values of u and g. The computer implementation of the proposed method shows that a proper coupler design is possible for any given coupler length. This is particularly interesting where space limitations impose contraints on the coupler length. The results are favorably compared with available computer simulation softwares.

  • Improvement of the Relative Permittivity Evaluation with a Whispering-Gallery Mode Dielectric Resonator Method

    Hajime TAMURA  Yoshinori KOGAMI  Kazuhito MATSUMURA  

     
    PAPER

      Vol:
    E86-C No:8
      Page(s):
    1665-1671

    Whispering-Gallery mode resonator method has been presented for complex permittivity evaluation of low loss dielectric materials in millimeter wave region. As a problem, it has been found that the evaluation error slightly dependens on the frequency for a sample. It comes from approximated analysis which is used in the procedure. In this paper, a mode-matching method is applied to this evaluation technique to have improvement of the measrued results. It is confirmed experimentally that reliability of the presented method is improved for the millimeter wave permittivity measurement.

  • Joint AIC and ML Decoder Scheme for a Space-Time Coded DS-CDMA System

    JooHyun YI  Jae Hong LEE  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:8
      Page(s):
    2512-2516

    In this paper, a joint adaptive interference canceller (AIC) and maximum likelihood (ML) decoder scheme is proposed for a space-time coded DS-CDMA system with the difference between arrival times from transmit antennas. As the arrival time difference causes not only ISI and MAI, but also inter-antenna interference, performance degradation in the space-time coded DS-CDMA system is more severe than that of a regular DS-CDMA system with single transmit antenna. To mitigate the effect of the interference during space-time decoding, a joint algorithm for the proposed scheme merges adaptation process of the AIC into a ML decoding algorithm. Performance of the proposed scheme is evaluated for QPSK space-time trellis codes with two transmit antennas. It is shown that the proposed scheme achieves better performance than the conventional ML decoding scheme.

741-760hit(1184hit)