The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] LER(1184hit)

661-680hit(1184hit)

  • Fault-Tolerant Meshes with Constant Degree

    Toshinori YAMADA  

     
    PAPER

      Vol:
    E88-A No:4
      Page(s):
    935-940

    This paper proves that for every positive integers n,k and any positive number ε, we can explicitly construct a DAG G with n+O(k1+ε) vertices and a constant degree such that even after removing any k vertices from G, the remaining digraph still contains an n-vertex dipath. This paper also proves that for every positive integers n,k and any positive number ε, we can explicitly construct a graph H with n+O(k2+ε) vertices and a constant degree such that even after removing any k vertices from H, the remaining graph still contains an n-vertex 2-dimensional square mesh.

  • Branch-Line Couplers Using Defected Ground Structure

    Y.J. SUNG  C.S. AHN  Y.-S. KIM  

     
    LETTER-Devices/Circuits for Communications

      Vol:
    E88-B No:4
      Page(s):
    1665-1667

    In this letter, a novel design of a branch-line coupler with considerable reduction in its size and suppressed harmonic passband is proposed. By embedding a defected ground structure (DGS) unit cell under a microstrip line, compact branch-line couplers are easily achieved. The electrical length is scaled appropriately according to the slow-wave effect. In this case, the experimental coupling (S21 or S31) is comparable to that of conventional branch-line couplers. Also, experimental results indicate that DGS section is quite effective for the suppression of higher order harmonics.

  • Optimal Design of Sensor Parameters in PLC-Based Control System Using Mixed Integer Programming

    Eiji KONAKA  Takashi MUTOU  Tatsuya SUZUKI  Shigeru OKUMA  

     
    PAPER

      Vol:
    E88-A No:4
      Page(s):
    818-824

    Programmable Logic Controller (PLC) has been widely used in the industrial control. Inherently, the PLC-based system is a class of Hybrid Dynamical System (HDS) in which continuous state of the plant is controlled by the discrete logic-based controller. This paper firstly presents the formal algebraic model of the PLC-based control systems which enable the designer to formulate the various kinds of optimization problem. Secondly, the optimization problem of the 'sensor parameters,' such as the location of the limit switch in the material handling system, the threshold temperature of the thermostat in the temperature control system, is addressed. Finally, we formulate this problem as Mixed Logical Dynamical Systems (MLDS) form which enables us to optimize the sensor parameters by applying the Mixed Integer Programming.

  • Power Optimization of an 8051-Compliant IP Microcontroller

    Luca FANUCCI  Sergio SAPONARA  Alexander MORELLO  

     
    LETTER

      Vol:
    E88-C No:4
      Page(s):
    597-600

    Several IP cells are available in the market to implement 8051-compliant microcontroller in embedded systems. Yet they frequently lack features that have become a key point in such systems, like power optimization. This paper aims at lowering the power consumption of an 8051 IP core while keeping unaltered performances, through Register Transfer Level techniques such as clustered clock gating, operand isolation and state encoding. This approach preserves the IP high-reusability and technology independence, as it only consists of modifications to the source VHDL code. A total power reduction of about 40% is achieved, with limited area overhead.

  • Multicarrier Power Amplifier Linearization Based on Artificial Intelligent Methods

    Masoud FAROKHI  Mahmoud KAMAREI  S. Hamaidreza JAMALI  

     
    PAPER-Electronic Circuits

      Vol:
    E88-C No:4
      Page(s):
    744-752

    This paper presents two new intelligent methods to linearize the Multi-Carrier Power Amplifiers (MCPA). One of the them is based on the Neuro-Fuzzy controller while the other uses two small neural networks as a polar predistorter. Neuro-Fuzzy controllers are not model based, and hence, have ability to control the nonlinear systems with undetermined parameters. Both methods are adaptive, low complex, and can be implemented in base-band part of the communication systems. The performance of the linearizers is obtained via simulation. The simulation is performed for three different scenarios; namely, a multi-carrier amplifier for GSM with four channels, a CDMA amplifier and a multi-carrier amplifier with two tones. The simulation results show that Neuro-Fuzzy Controller (NFC) and Neural Network Polar Predistorter (NNPP) have higher efficiencies so that reduce IMD3 by more than 42 and 32 dB, respectively. The practical implementation aspects of these methods are also discussed in this paper.

  • Programmable Coupler Ladder Based on Lithium Niobate Y-Junction Reflector

    Jianxiao CHEN  Tetsuya KAWANISHI  Kaoru HIGUMA  Satoshi SHINADA  William S.C. CHANG  Masayuki IZUTSU  Paul K.L. YU  

     
    PAPER

      Vol:
    E88-C No:3
      Page(s):
    379-384

    This paper presents a proposal for a novel integrated tunable coupler device called programmable coupler ladder, based on Titanium diffused lithium niobate waveguide and Y-junction reflector. Unlike the traditional serial to parallel converter, the coupler ladder sorts the output bits in the time axis using a built-in delay waveguide. With a proper control signal it can perform signal processing at the bit level. It also can generate coherent multi-channel outputs with theoretically arbitrary amplitude and phase from continuous input light source. Its application in optical microwave beam forming is briefly described. The key component, built-in delay line based on Y-junction reflector, has been experimentally verified via a loop resonator structure. 1 dB loss is found for each Y-junction reflector, which enables a practical coupler ladder. The loop itself is also an important device for optical signal processing.

  • Surface Waves along a Boundary of Single Negative Material

    Masashi HOTTA  Mitsuo HANO  Ikuo AWAI  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:2
      Page(s):
    275-278

    Existence of a surface wave along the boundary between the semi-infinite materials, one of which is a free-space and the other is a material with either negative permeability or negative permittivity, is theoretically investigated. Surface waves exist in only limited combination of negative and positive signs of the material parameters. In addition, by analyzing the surface wave in a finite-thickness slab with negative permeability, its mode profile has been obtained for two different types of symmetry. From these results, the present paper predicts the possibility of a surface wave directional coupler based on a single slab transmission along its top and bottom surfaces.

  • Output Feedback Stabilization for a Class of Lipschitz Nonlinear Systems

    Ho-Lim CHOI  Jong-Tae LIM  

     
    LETTER-Systems and Control

      Vol:
    E88-A No:2
      Page(s):
    602-605

    In this letter, we provide a solution to the stabilization problem of a class of Lipschitz nonlinear systems by output feedback. Via the newly proposed nonlinearity characterization function (NCF) concept, we propose an effective method in designing an output feedback controller. Under the suggested sufficient condition which is derived by using the NCF, the proposed control scheme achieves the global exponential stabilization.

  • Analysis and Design of Three Section Coupled Line Couplers

    Myun-Joo PARK  Byungje LEE  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:2
      Page(s):
    279-281

    Non-equal length, three section coupled transmission line couplers are proposed. The proposed structure offers increased design flexibility and the compact circuit design capability over the conventional quarterwave coupled lines. The detailed analysis results and design method are presented along with the numerical and the experimental verification.

  • Non-destructive Detection of Defects in Carbon Fiber-Reinforced Carbon Matrix Composites Using SQUID

    Naoko KASAI  Yoshimi HATSUKADE  Hiroshi TAKASHIMA  

     
    INVITED PAPER

      Vol:
    E88-C No:2
      Page(s):
    180-187

    Carbon fiber composites are increasingly used as structural materials because of their unique and advantageous characteristics. Carbon fiber reinforced carbon matrix composite (C/C) has the characteristics of high fatigue resistance, fracture toughness and heat resistance up to 3000 K, and is an important component of refractory tiles and nozzles in space shuttles. Useful nondestructive testing methods for C/C are now required. We have developed a SQUID-NDT system based on a non-magnetic coaxial pulse tube cryocooler (PTC), a HTS-SQUID gradiometer and a field generator with ferrite cores that induces high currents in specimens with low electric conductivity. The cryostat with the PTC is compact, at 50 mm in diameter and 400 mm in height. It weighs a total of 4 kg. The system noise is 80 µ0/Hz1/2 corresponding to 1.3 nT/m/Hz1/2 at 100 Hz. We used the system to investigate the usefulness of the SQUID-NDT in detecting flaws in C/C composites. Hidden cracks in C/C multi-layered specimens were detected up to depth of 15 mm. Hidden cracks in C/C-Al stacked sample was also clearly detected. In addition, we magnetically detected the mechanical breaking process of a C/C specimen under tensile load using the current injection method. For this study, a technique for visualizing current detouring defects was developed for detection of deteriorating areas in the specimen. The deteriorating area, identified from the current map, expands during breaking process and agrees with the results obtained by the microscopic observation of the breaking process. The interrupted current Iint, estimated by summing the detour current, clearly changed depending on the stage of the breaking process, suggesting that Iint may be applicable as good index for distinguishing each stage in the breaking process. It is concluded that a SQUID-NDT is applicable to C/C composites and advanced complex materials with low electric conductivity in addition to metallic materials.

  • Doppler Spread Estimation in Mobile Communication Systems

    Young-Chai KO  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E88-B No:2
      Page(s):
    724-728

    A new technique based on the auto-correlation function is described for the estimation of the Doppler spread in mobile communication systems. We first propose to divide a uncertainty region of Doppler spread into multiple frequency bins. Based on the given multiple bins the correlator compares the estimated value at a certain time index to the theoretical exact value and then decides which bin the Doppler spread is estimated in. The certain time index can be optimized to give the largest decision region among multiple bins. We derive the optimum time index algorithm to give the largest decision region for each bin based on Rayleigh fading channel. We also apply the same Doppler spread estimator to the Rician case with the slight transformation of the received signal. We show that the proposed technique is not affected significantly by the Rician factor and the SNR degradation with the reasonable number of samples for estimation which is not the case of other estimators given in the literature.

  • A Low-Loss Serial Power Combiner Using Novel Suspended Stripline Couplers

    Yukihiro TAHARA  Hideyuki OH-HASHI  Kazuyuki TOTANI  Moriyasu MIYAZAKI  Sei-ichi SAITO  Osami ISHIDA  

     
    PAPER

      Vol:
    E88-C No:1
      Page(s):
    15-19

    A low-loss serial power combiner using suspended stripline is described. It consists of novel broadside-coupled directional couplers which have shunt capacitances at the edges of the coupled sections. These additional shunt capacitances compensate for poor directivities of the couplers because of inhomogeneous dielectric in suspended stripline structure. The fabricated three-way power combiner has achieved good performance with insertion loss less than 0.23 dB over a bandwidth of 10% in 2 GHz band.

  • Design of Quadrature Hybrids and Directional Couplers Based on the Equivalent Admittance Approach

    Isao OHTA  Tadashi KAWAI  

     
    INVITED PAPER

      Vol:
    E88-C No:1
      Page(s):
    2-14

    This paper presents a design procedure of a directional coupler consisting of a twofold symmetric four-port circuit with four identical matching networks at each port. The intrinsic power-split ratio and the equivalent admittance of the directional coupler are formularized in terms of the eigenadmittances of the original four-port without the matching networks. These formulas are useful for judgment on the realizability of a directional coupler in a given circuit structure and for design of the matching networks. Actually, the present procedure is applied to designing various quadrature hybrids and directional couplers, and its practical usefulness as well as several new circuit structures are demonstrated.

  • A Simple Method of BER Calculation in DPSK/OFDM Systems over Fading Channels

    Fumihito SASAMORI  Shiro HANDA  Shinjiro OSHITA  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E88-A No:1
      Page(s):
    366-373

    In orthogonal frequency division multiplexing (OFDM) systems with differential phase shift keying (DPSK), it is possible to apply differential modulation either in the time or frequency domain depending on the condition of fading channels, such as the Doppler frequency shift and the delay spread. This paper proposes a simple calculation method, that is, an approximate closed-form equation of the bit error rate (BER) in DPSK/OFDM systems mentioned above over both time and frequency selective Rician fading channels. The validity of the proposed method is demonstrated by the fact that the BER performances given by the derived equation coincide with those by Monte Carlo simulation.

  • Correction of OFDM Signal Form in Time Domain to Reduce ICI Due to the Doppler Spread and Carrier Frequency Offset

    Gagik MKRTCHYAN  Kazuo MORI  Hideo KOBAYASHI  

     
    PAPER-Interference Canceller

      Vol:
    E88-B No:1
      Page(s):
    122-133

    This paper analyzes the immediate cause of the ICI in OFDM systems due to the Doppler spread and carrier frequency offset. As shown, ICI occurs because of the using DFT (FFT) and IDFT (IFFT) for signal conversion from time domain into frequency domain, and vice versa, when the sampled signal has limited duration. Proposed method refines the spectral density function of subcarriers, when applied in the transmission side, and improves the characteristics of the DFT as a digital filter, when applied in the receiver side. Simulation includes, working under the same conditions, models of conventional OFDM, PCC-OFDM and proposed method. Results of the simulation show that proposed method provides up to the 10 times less BER than PCC-OFDM and up to the 100 times less BER than conventional OFDM, which allows using of the OFDM in the mobile communication for vehicle speed up to the 500 km/hr.

  • Timed Uniform Atomic Broadcast in Presence of Crash and Timing Faults

    Taisuke IZUMI  Toshimitsu MASUZAWA  

     
    PAPER

      Vol:
    E88-D No:1
      Page(s):
    72-81

    Δ-Timed Atomic Broadcast is the broadcast ensuring that all correct processes deliver the same messages in the same order, and that delivery latency of any message broadcast by any correct process is some predetermined time Δ or less. In this paper, we propose a Δ-timed atomic broadcast algorithm in a synchronous system where communication delay is bounded by a known constant d and processes suffer both crash faults and timing faults. The proposed algorithm can tolerate fc crash faults and ft timing faults as long as at least ft + 1 processes are correct, and its maximum delivery latency Δ is (2f' + 7)d where f' is the actual number of (crash or timing) faulty processes. That is, the algorithm attains the early-delivery in the sense that its delivery latency depends on the actual number of faults rather than the maximum number of faults that the algorithm can tolerate. Moreover, the algorithm has a distinct advantage of guaranteeing that timing-faulty processes also deliver the same messages in the same order as the correct processes (Uniformity). We also investigate the maximum number of faulty processes that can be tolerated. We show that no Δ-timed atomic broadcast algorithm can tolerate ft timing faults, if at most ft processes are correct. The impossibility result implies that the proposed algorithm achieves the maximum fault-resilience with respect to the number of faulty processes.

  • Fault-Tolerant Pancyclicity of the Mobius Cubes

    Ming-Chien YANG  Tseng-Kuei LI  Jimmy J.M. TAN  Lih-Hsing HSU  

     
    PAPER-Graphs and Networks

      Vol:
    E88-A No:1
      Page(s):
    346-352

    The Mobius cube MQn proposed by Cull et al. is an alternative to the popular hypercube network. Recently, MQn was shown to be pancyclic, i.e., cycles of any lengths at least four can be embedded into it. Due to the importance of the fault tolerance in the parallel processing area, in this paper, we study an injured MQn with mixed node and link faults. We show that it is (n - 2)-fault-tolerant pancyclic for n 3, that is, an injured n-dimensional MQn is still pancyclic with up to (n - 2) faults. Furthermore, our result is optimal.

  • A Simple Minimum Rate Supporting Scheduler for High Speed Downlink Packet Access

    Dong Seung KWON  Dongwoo KIM  Han-Kyu PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E87-B No:12
      Page(s):
    3791-3793

    A simple Minimum Rate Supporting Scheduler (MRSS) is proposed for HSDPA (High Speed Downlink Packet Access). MRSS guides the user selection in order to provide, if any, a prespecified minimum rate for each user. The simulation results show that MRSS successfully supports to keep the minimum rate up to fairly high traffic load, where existing methods fail, with tolerable degradation in throughput.

  • A Design Scheme for Delay Testing of Controllers Using State Transition Information

    Tsuyoshi IWAGAKI  Satoshi OHTAKE  Hideo FUJIWARA  

     
    PAPER-Test

      Vol:
    E87-A No:12
      Page(s):
    3200-3207

    This paper presents a non-scan design scheme to enhance delay fault testability of controllers. In this scheme, we utilize a given state transition graph (STG) to test delay faults in its synthesized controller. The original behavior of the STG is used during test application. For faults that cannot be detected by using the original behavior, we design an extra logic, called an invalid test state and transition generator, to make those faults detectable. Our scheme allows achieving short test application time and at-speed testing. We show the effectiveness of our method by experiments.

  • Iterative Adaptive Soft Parallel Interference Canceller for Turbo Coded MIMO Multiplexing

    Akinori NAKAJIMA  Deepshikha GARG  Fumiyuki ADACHI  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E87-B No:12
      Page(s):
    3813-3819

    In this paper, iterative adaptive soft parallel interference canceller (ASPIC) is proposed for turbo coded multiple-input multiple-output (MIMO) multiplexing. ASPIC is applied to transform a MIMO channel into single-input multiple-output (SIMO) channels for maximum ratio diversity combining (MRC). In the ASPIC, replicas of the interference are generated and subtracted from the received signals. For the generation of replicas with higher reliability, iterative ASPIC is proposed. It performs the iterative interference cancellation by feedback of the log-likelihood ratio (LLR) sequence obtained as the turbo decoder output. For iterative ASPIC, at the transmitter, the information sequence and parity sequence are transmitted from different antennas. In this paper, the achievable bit error rate (BER) performance, in a Rayleigh fading channel, for the turbo coded MIMO multiplexing with the proposed iterative ASPIC system is evaluated by computer simulation.

661-680hit(1184hit)