Seok-Hwan JEONG Shinji MATSUO Yuzo YOSHIKUNI Toru SEGAWA Yoshitaka OHISO Hiroyuki SUZUKI
We propose and demonstrate a novel ladder interferometric filter that exhibits flat-topped spectral response for use in wavelength-division-multiplexing (WDM) based photonic networks. We numerically analyze the flattened spectral response in a ladder-type filter by modifying the transfer matrix of ladder interferometer. Conventional parabolic-shaped and flat-topped-designed ladder interferometric filters are fabricated, and characterized. We demonstrate a flat-topped filter response in the fabricated device. The shape factor, which is defined by the ratio of -1 dB bandwidth to -10 dB bandwidth, is improved from 0.32 to 0.54. The tunability and the increase in filter extinction ratio of the proposed device are also discussed.
Eul Gyu IM Hoh Peter IN Dae-Sik CHOI Yong Ho SONG
The emergence of intelligent and sophisticated attack techniques makes web services more vulnerable than ever which are becoming an important business tool in e-commerce. Many techniques have been proposed to remove the security vulnerabilities, yet have limitations. This paper proposes an adaptive mechanism for a web-server intrusion-tolerant system (WITS) to prevent unknown patterns of attacks by adapting known attack patterns. SYN flooding attacks and their adaptive defense mechanisms are simulated as a case study to evaluate the performance of the proposed adaptation mechanism.
Direction-of-arrival (DOA) estimation based on subspace methods has collected much interest over a few decades, and adaptive DOA estimation with rapidly changing parameters will be necessary for wireless communications. This paper is concerned with a new subspace tracking scheme by using an accelerated LMS and RLS algorithms for time-varying parameters. The proposed accelerated adaptive algorithms are based on the internal model principle by approximately expressing the changing parameters by an expansion of polynomial time functions. Thus its application to DOA estimation based on the MUSIC and MODE schemes is presented and the effectiveness is validated in numerical simulations.
Shin-ichi YAMAMOTO Jiro HIROKAWA Makoto ANDO
The authors realize a 50% length reduction of short-slot couplers in a post-wall dielectric substrate by two techniques. One is to introduce hollow rectangular holes near the side walls of the coupled region. The difference of phase constant between the TE10 and TE20 propagating modes increases and the required length to realize a desired dividing ratio is reduced. Another is to remove two reflection-suppressing posts in the coupled region. The length of the coupled region is determined to cancel the reflections at both ends of the coupled region. The total length of a 4-way Butler matrix can be reduced to 48% in comparison with the conventional one and the couplers still maintain good dividing characteristics; the dividing ratio of the hybrid is less than 0.1 dB and the isolations of the couplers are more than 20 dB.
Osamu ICHIKAWA Masafumi NISHIMURA
Recently, automatic speech recognition in a car has practical uses for applications like car-navigation and hands-free telephone dialers. For noise robustness, the current successes are based on the assumption that there is only a stationary cruising noise. Therefore, the recognition rate is greatly reduced when there is music or news coming from a radio or a CD player in the car. Since reference signals are available from such in-vehicle units, there is great hope that echo cancellers can eliminate the echo component in the observed noisy signals. However, previous research reported that the performance of an echo canceller is degraded in very noisy conditions. This implies it is desirable to combine the processes of echo cancellation and noise reduction. In this paper, we propose a system that uses echo cancellation and spectral subtraction simultaneously. A stationary noise component for spectral subtraction is estimated through the adaptation of an echo canceller. In our experiments, this system significantly reduced the errors in automatic speech recognition compared with the conventional combination of echo cancellation and spectral subtraction.
Achmad ARIFIN Takashi WATANABE Nozomu HOSHIMIYA
We proposed a fuzzy control scheme to implement the cycle-to-cycle control for restoring swing phase of gait using functional electrical stimulation (FES). We designed two fuzzy controllers for the biceps femoris short head (BFS) and the vastus muscles to control flexion and extension of the knee joint during the swing phase. Control capabilities of the designed fuzzy controllers were tested and compared to proportional-integral-derivative (PID) and adaptive PID controllers in automatic generation of stimulation burst duration and compensation of muscle fatigue through computer simulations using a musculo-skeletal model. Parameter adaptations in the adaptive PID controllers did not significantly improve the control performance of the PID controllers. The fuzzy controllers were superior to the PID and adaptive PID controllers under several subject conditions and different fatigue levels. These results showed the fuzzy controller would be suitable to implement the cycle-to-cycle control of FES-induced gait.
Kazuto YANO Shoichi HIROSE Susumu YOSHIDA
In a CDMA non-linear interference canceller, a generated replica of an interference signal is multiplied by a positive number smaller than unity, which is called cancellation moderating factor (CMF), to prevent interference enhancement due to inaccurate replica subtraction. In this paper, two CMF controlling schemes applicable to a multistage parallel interference canceller with multi-antenna (spatial diversity) reception are proposed. They control CMF by using the mean square error of the complex channel gain or by using the ratio of the estimated power of each interference signal to remaining interference signals' power, in order to mitigate the replica subtraction error due to inaccurate channel estimation. The performance of the proposed schemes are evaluated by computer simulations assuming an asynchronous uplink single chip-rate variable spreading factor DS-CDMA system. The simulation results show that the proposed schemes with higher order diversity reception improve the bit error rate (BER) performance compared with a conventional scheme considering the tentative decision error or fixed CMF settings. Their performance improvement is by 0.1-0.9 dB in terms of the required Eb/N0 at an average BER of 10-5 over exponentially decaying 5-path Rayleigh distributed channels when the number of receiving antennas is 6.
A robust microphone array for speech enhancement and noise suppression is studied in this paper. To overcome target signal cancellation problem of conventional beamformer caused by array imperfections or reverberation effects of acoustic enclosure, the proposed microphone array adopts an arbitrary model of channel transfer function (TF) relating microphone and speech source. Since the estimation of channel TF itself is often intractable, herein, transfer function ratio (TFR) is estimated instead and used to form a suboptimal beamformer. A robust TFR estimation method is proposed based on signal subspace analysis technique against stationary or slowly varying noise. Experiments using simulated signal and actual signal recorded in a real room illustrate that the proposed method has high performance in adverse environment.
Nam-Kyung LEE Soo-Hoan CHAE Deock-Gil OH Ho-Jin LEE
This paper describes two way satellite system environments on geostationary orbit (GEO) and performance enhancement mechanisms which reduces round trip time (RTT) and supports real-time services. We use performance enhancing proxy (PEP) for reducing round trip time and user-level real-time scheduler for reducing deadline violation tasks. The user-level real-time scheduling method classifies priority of user process into four types and those are reflected in kernel. With these dual performance enhancement mechanisms, we can improve quality of service (QoS) of end-user who connects to the DVB-RCS system.
A millimeter wave BPF constructed from the WG mode dielectric disk resonators is presented. The design chart for the high Q WG mode resonator is obtained from Qu calculation of some WG modes. By using the design chart, high Q WG mode resonator having no influence of unwanted higher order resonances is designed. Designed resonators have different diameter and various Resonance Frequency Separation respectively. A 3 stage maximally flat BPF is constructed so that each resonator may be coupled laterally on the edge of the disk. Designed center frequency is 62.47 GHz and 3 dB bandwidth is 100 MHz. As a result, this BPF has insertion loss of 1.5 dB and some spurious responses which were existed conventional WG mode BPF are reduced considerably.
Hiroyasu SAKAMOTO Katsuya MATSUMOTO Azusa KUWAHARA Yoshiteru HAYAMI
In this paper, two techniques are proposed for accelerating and stabilizing the Levenberg-Marquardt (LM) method where its conventional stabilizer matrix (identity matrix) is superseded by (1) a diagonal matrix whose elements are column norms of Jacobian matrix J, or (2) a non-diagonal square root matrix of J TJ. Geometrically, these techniques make constraint conditions of the LM method fitted better to relevant cost function than conventional one. Results of numerical simulations show that proposed techniques are effective when both column norm ratio of J and mutual interactions between arguments of the cost function are large. Especially, the technique (2) introduces a new LM method of damped Gauss-Newton (GN) type which satisfies both properties of global convergence and quadratic convergence by controlling Marquardt factor and can stabilize convergence numerically. Performance of the LMM techniques are compared also with a damped GN method with line search procedure.
Chih-Kang HSU Wen-Kai TAI Cheng-Chin CHIANG Mau-Tsuen YANG
Visibility culling techniques have been studied extensively in computer graphics for interactive walkthrough applications in recent years. In this paper, a visibility culling approach by exploiting hardware-accelerated occlusion query is proposed. Organizing the regular grid representation of input scene as an octree-like hierarchy, a 2-tier view frustum culling algorithm is to efficiently cull away nodes invisible from a given viewpoint. Employing the eye-siding number of nodes, we can quickly enumerate an occlusion front-to-back order and effectively maximize the number of parallelizable occlusion queries for nodes while traversing the hierarchy. As experimental results show, our approach improves the overall performance in the test walkthrough.
A rotator graph was proposed as a topology for interconnection networks of parallel computers, and it is promising because of its small diameter and small degree. However, a rotator graph is a directed graph that sometimes behaves harmfully when it is applied to actual problems. A bi-rotator graph is obtained by making each edge of a rotator graph bi-directional. In a bi-rotator graph, average distance is improved against a rotator graph with the same number of nodes. In this paper, we give an algorithm for the container problem in bi-rotator graphs with its evaluation results. The solution achieves some fault tolerance such as file distribution based information dispersal technique. The algorithm is of polynomial order of n for an n-bi-rotator graph. It is based on recursion and divided into two cases according to the position of the destination node. The time complexity of the algorithm and the maximum length of paths obtained are estimated to be O(n3) and 4n-5, respectively. Average performance of the algorithm is also evaluated by computer experiments.
To guarantee the high reliability of video services, video servers usually adopt parity-encoding techniques in which data blocks and their associated parity blocks form a parity group. For real-time video service, all the blocks in a parity group are prefetched in order to cope with a possible disk failure, thereby incurring a buffering overhead. In this paper, we propose a new scheme called Round-level Parity Grouping (RPG) to reduce the buffer overhead while restoring VBR video streams in the presence of a faulty disk. RPG allows variable parity group sizes so that the exact amount of data is retrieved during each round. Based on RPG, we have developed a storage allocation algorithm for effective buffer management. Experimental results show that our proposed scheme reduces the buffer requirement by 20% to 25%.
Radio packet schedulers are currently being implemented in cdma2000 1x and 1xEV. cdma2000 1x stems from TIA/EIA-95 that was optimised to support circuit-based voice communications and is now extended to support high speed data transmission up to 153.6 kbps. 1xEV is primarily for wireless Internet access and can support up to maximally 2.4 Mbps. Compared with other 3G mobile systems that focus on voice services and guaranteed quality of the services, 1xEV exploits the delay-tolerant transmission of the packet data services so as to achieve spectral efficiency and reduce the cost of providing such services. Supporting multimedia transfer including real-time as well as delay-tolerant data transmission, however, is a must in designing packet schedulers for future mobile systems. In this letter, we address design issues of a packet scheduler by comparing two existing different schedulers: WQDS (Weighted Queuing Rate Scheduler) for cdma2000 1x and PFRS (Proportional Fairness Rate Scheduler) for 1xEV. Comparisons are made on the structure of schedulers as well as by numerical evaluations of performance.
In many electromagnetic field problems, matrix equations were always deduced from using the method of moment. Among these matrix equations, some of them might require a large amount of computer memory storage which made them unrealistic to be solved on a personal computer. Virtually, these matrices might be too large to be solved efficiently. A fast algorithm based on a Toeplitz matrix solution was developed for solving a bordered Toeplitz matrix equation arising in electromagnetic problems applications. The developed matrix solution method can be applied to solve some electromagnetic problems having very large-scale matrices, which are deduced from the moment method procedure. In this paper, a study of a computationally efficient order-recursive algorithm for solving the linear electromagnetic problems [Z]I = V, where [Z] is a Toeplitz matrix, was presented. Upon the described Toeplitz matrix algorithm, this paper derives an efficient recursive algorithm for solving a bordered Toeplitz matrix with the matrix's major portion in the form of a Toeplitz matrix. This algorithm has remarkable advantages in reducing both the number of arithmetic operations and memory storage.
Wai Heng CHOW David Paul STEENSON
A fully integrated broadband distributed frequency tripler, periodically loaded with HBV devices, has been designed and fabricated and has demonstrated the generation of a broad range of output frequencies of up to 570 GHz. Key to the design is the principle that the entire frequency tripler circuit is produced monolithically and incorporates novel HBV devices electrically and mechanically interconnected by a thin low-loss SU-8 membrane. With the device fabrication approach used, the novel HBV devices are able to produce a higher capacitance-voltage swing ratio whilst simultaneously minimizing the device series and contact resistances to achieve the optimum conversion efficiency. The entire concept of this work was to design a cost effective fully integrated waveguide package, with the frequency tripler circuit mounted at the E-plane of a micromachined waveguide which was constructed with stepped height and width to prevent the propagation of higher order modes inside the waveguide sections. The micromachined waveguide sections exhibit high dimensional accuracy and a good surface finish which is necessary for the efficient propagation of high frequency signals. The frequency tripler circuit and the accompanying micromachined waveguide sections are mounted in a specifically designed metal test fixture to form a compact and cost-effective subcomponent with great commercial potential for broadband harmonic generation of up to terahertz frequencies. This paper presents the design methodology and techniques used to produce the frequency tripler package, together with some initial measurement results.
Shinya MIYAZAKI Mamoru ENDO Masashi YAMADA Junichi HASEGAWA Takami YASUDA Shigeki YOKOI
This paper presents a deformable fast computation elastic model for real-time processing applications. 'Gradational element resolution model' is introduced with fewer elements for fast computation, in which small elements are laid around the object surface and large elements are laid in the center of the object. Elastic element layout is changed dynamically according to the deformation of cutting or tearing objects. The element reconstruction procedure is applied little by little for each step of the recursive motion generation process to avoid an increase in motion computation time.
Thet Htun KHINE Kazuhiko FUKAWA Hiroshi SUZUKI
As a blind linear-interference-canceller for DS-CDMA mobile communications, the orthogonal matched filter (OMF) minimizes the power of the output while maintaining constant power of the desired signal in the output. This paper studies the extension of OMF to an RAKE receiver (OMF-RAKE), which adaptively controls the steering vectors that determine the constraint. It also applies the QR-RLS algorithm to estimate the OMF-RAKE parameters and investigates a hardware implementation that employs a systolic array. Computer simulations show that OMF-RAKE with the QR-RLS algorithm and the systolic array structure can reduce the computational complexity to about a half that of the conventional RLS-type algorithm without degrading the BER.
In this paper, we present the classification of small antennas based on statistical data. The three categories of downsizing methods are loading a matching circuit, changing the current path, and using dielectric/magnetic materials. These categories are explained using several examples. In this paper, we show that the miminum Q value as a fundamental limit defined by an infinitesimal dipole is effective for determining the index factor of small antennas. Radiation efficiency measurements for small antennas are also discussed.