The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] LF(726hit)

561-580hit(726hit)

  • Generation of Wideband and Flat Supercontinuum over a 280-nm Spectral Range from a Dispersion-Flattened Optical Fiber with Normal Group-Velocity Dispersion

    Fumio FUTAMI  Yuichi TAKUSHIMA  Kazuro KIKUCHI  

     
    INVITED PAPER-Optical Fibers and Cables

      Vol:
    E82-C No:8
      Page(s):
    1531-1538

    Aiming at wideband and flat supercontinuum generation (SC) from optical fibers in the 1.55-µm wavelength region, we study both experimentally and theoretically how SC spectra are influenced by group-velocity dispersion (GVD) of fibers. In the anomalous GVD region, since the peak power of pump pulses is kept high during propagation through the fiber by the higher-order soliton effect, the Raman effect has an adverse effect to flat and wideband SC generation. In the zero GVD region, the interplay of the third-order dispersion (TOD) and the self-phase modulation splits the SC spectrum into two main components. On the other hand, in the normal GVD region, nevertheless the SC spectrum broadens wider and smoother than those in anomalous and zero GVD regions, it is still asymmetric when TOD of the fiber can not be ignored. From these results, we find that a dispersion-flattened fiber with normal GVD is the most suitable for flat and wideband SC generation. A 280-nm wide SC spectrum with the spectral-density fluctuation less than 10 dB is actually generated from such a fiber.

  • Evaluation of Shared Bandwidth for Mobile Multimedia Networks Using a Diffusion Model

    Yoneo WATANABE  Noriteru SHINAGAWA  Takehiko KOBAYASHI  Masaki AIDA  

     
    LETTER

      Vol:
    E82-A No:7
      Page(s):
    1287-1291

    This letter proposes a diffusion model that considers both mobility and multimedia based on the user population process to examine the effects of multimedia in mobile communications. As an application example of this model, the shared bandwidth that can be used by one user in packet communications is evaluated. In this model, the user speed and variation in the number of users in a cell are interrelated with respect to mobility. By examining the shared bandwidth behavior based on multimedia teletraffic characteristics, assuming that the number of simultaneously-communicating users within a cell have self-similarity, we found that shared bandwidth and its variance are not dependent on self-similarity but that variance in the shared bandwidth is dependent on user speed.

  • Design of a Bandpass Filter with Multiple Attenuation Poles Based on Tapped Resonators

    Kouji WADA  Ikuo AWAI  

     
    PAPER-Passive Devices and Circuits

      Vol:
    E82-C No:7
      Page(s):
    1116-1122

    An intrinsic property of a tapped resonator is elucidated here, and a novel bandpass filter (BPF) with improved skirt characteristics based on a tapped half-wavelength resonator is proposed by this intrinsic property. "Tapping" for both I/O and interstage couplings of the resonator is the key concept here because a resulting open-ended resonator makes shunt open stubs which give anti-resonance near the center frequency. Multiple attenuation poles appear near the center frequency, namely, close to the passband. A BPF is designed on the basis of the general filter theory with a narrow band approximation. An experiment is carried out to confirm the concept by using a coplanar structure. The expected bandpass characteristics with multiple attenuation poles have been obtained by the novel BPF designed by the present concept.

  • A Topology Preserving Neural Network for Nonstationary Distributions

    Taira NAKAJIMA  Hiroyuki TAKIZAWA  Hiroaki KOBAYASHI  Tadao NAKAMURA  

     
    LETTER-Bio-Cybernetics and Neurocomputing

      Vol:
    E82-D No:7
      Page(s):
    1131-1135

    We propose a learning algorithm for self-organizing neural networks to form a topology preserving map from an input manifold whose topology may dynamically change. Experimental results show that the network using the proposed algorithm can rapidly adjust itself to represent the topology of nonstationary input distributions.

  • Intelligent Controller Using CMACs with Self-Organized Structure and Its Application for a Process System

    Toru YAMAMOTO  Masahiro KANEDA  

     
    LETTER-Systems and Control

      Vol:
    E82-A No:5
      Page(s):
    856-860

    Cerebellar Model Articulation Controller (CMAC) has been proposed as one of artificial neural networks. This paper describes a design scheme of intelligent control system consists of some CMACs. Each of CMACs is trained for the specified reference signal. A new CMAC is generated for unspecified reference signals, and the CMAC whose reference signal is nearest for the new reference signal, is eliminated. Therefore, since the reference signals are removed from the input signals of the CMAC, the proposed intelligent controller can be designed with fairly small memories.

  • Pool-Capacity Design Scheme for Efficient Utilizing of Spare Capacity in Self-Healing Networks

    Komwut WIPUSITWARAKUN  Hideki TODE  Hiromasa IKEDA  

     
    PAPER-Switching and Communication Processing

      Vol:
    E82-B No:4
      Page(s):
    618-626

    The self-healing capability against network failure is one of indispensable features for the B-ISDN infrastructure. One problem in realizing such self-healing backbone network is the inefficient utilization of the large spare capacity designed for the failure-restoration purpose since it will be used only in the failure time that does not occur frequently. "Pool-capacity" is the concept that allows some VPs (virtual paths) to efficiently utilize this spare capacity part. Although the total capacity can be saved by using the "Pool Capacity," it is paid by less reliability of VPs caused by the emerging influence of indirect-failure. Thus, this influence of indirect-failure has to be considered in the capacity designing process so that network-designers can trade off the saving of capacity with the reliability level of VPs in their self-healing networks. In this paper, Damage Rate:DR which is the index to indicate the level of the influence caused by indirect-failure is defined and the pool-capacity design scheme with DR consideration is proposed. By the proposed scheme, the self-healing network with different cost (pool-capacity) can be designed according to the reliability level of VPs.

  • Observation of Self-Pulsation Phenomenon in a Semiconductor Ring Laser

    Kozo TAGUCHI  Kaname FUKUSHIMA  Atsuyuki ISHITANI  Masahiro IKEDA  

     
    LETTER-Opto-Electronics

      Vol:
    E82-C No:4
      Page(s):
    659-661

    We first demonstrate a self-pulsation phenomenon in a semiconductor ring laser(SRL). Not only self-mode-locked optical pulse but self-Q-switched optical pulse can be observed in a SRL. Furthermore, experimental results show that the repetition period of the Q-switched optical pulse train can be controlled by the injection current to a SRL.

  • Digital Halftoning Algorithm Based on Random Space-Filling Curve

    Tetsuo ASANO  

     
    LETTER-Image Theory

      Vol:
    E82-A No:3
      Page(s):
    553-556

    This letter introduces a new digital halftoning technique based on error diffusion along a random space-filling curve. The purpose of introducing randomness is to erase regular patterns which tend to arise in an image area of uniform intensity. A simple algorithm for generating a random space-filling curve is proposed based on a random spanning tree and maze traversal. Some experimental results are also given.

  • A High-Performance Switch Architecture for Free-Space Photonic Switching Systems

    Shigeo URUSHIDANI  Masayasu YAMAGUCHI  Tsuyoshi YAMAMOTO  

     
    PAPER-Circuit Switching and Cross-Connecting

      Vol:
    E82-B No:2
      Page(s):
    298-305

    Design and evaluation of a high-performance switch architecture for free-space photonic switching systems is described. The switch is constructed of 22 switching elements and employs special multistage interconnection patterns. The connection setup algorithm and the control procedure at the switching elements are based on a "rerouting algorithm." Performance analysis shows that the blocking probability of the switch is easily controlled by increasing the number of switching stages. Example implementations of this switch are shown in which birefringent plates, polarization controllers, etc. are used.

  • All-Optical Code Division Multiplexing Switching Network Based on Self-Routing Principle

    Isamu SAEKI  Shouhei NISHI  Koso MURAKAMI  

     
    PAPER-Photonic Networking

      Vol:
    E82-B No:2
      Page(s):
    239-245

    The tera-bit order capacity of ultrahigh-speed and wide-band networks will become necessary to provide highly advanced multimedia services. In conventional networks, electronic circuits limit the speed capability of the networks. Consequently, all-optical networks are essential to realize ultrahigh-speed and wide-band communications. In this paper, we propose the configuration of an all-optical code division multiplexing (CDM) switching network based on self-routing principles and the structure of a nonlinear all-optical switching device as one of the key components for the network. We show that the required performances of the optical devices used in the CDM switching fabric are lower than those used in the TDM and illustrate the basic transmission characteristics of the switching device utilizing FD-BPM. To evaluate the multiplexing performance, we demonstrate the maximum number of channels under an error-free condition and the BER characteristics when the Gold sequence is applied as one of the CDM code sets, and show that the network of the sub-tera-bit order capacity is realizable by adopting TDM, WDM and CDM technologies. We also illustrate the packet assembly method suitable for self-routing transmissions and one of network architectures where the proposed switching fabric can be exploited.

  • All-Optical Code Division Multiplexing Switching Network Based on Self-Routing Principle

    Isamu SAEKI  Shouhei NISHI  Koso MURAKAMI  

     
    PAPER-Photonic Networking

      Vol:
    E82-C No:2
      Page(s):
    187-193

    The tera-bit order capacity of ultrahigh-speed and wide-band networks will become necessary to provide highly advanced multimedia services. In conventional networks, electronic circuits limit the speed capability of the networks. Consequently, all-optical networks are essential to realize ultrahigh-speed and wide-band communications. In this paper, we propose the configuration of an all-optical code division multiplexing (CDM) switching network based on self-routing principles and the structure of a nonlinear all-optical switching device as one of the key components for the network. We show that the required performances of the optical devices used in the CDM switching fabric are lower than those used in the TDM and illustrate the basic transmission characteristics of the switching device utilizing FD-BPM. To evaluate the multiplexing performance, we demonstrate the maximum number of channels under an error-free condition and the BER characteristics when the Gold sequence is applied as one of the CDM code sets, and show that the network of the sub-tera-bit order capacity is realizable by adopting TDM, WDM and CDM technologies. We also illustrate the packet assembly method suitable for self-routing transmissions and one of network architectures where the proposed switching fabric can be exploited.

  • A Simple Pole-Assignment Scheme for Designing Multivariable Self-Tuning Controllers

    Toru YAMAMOTO  Yujiro INOUYE  Masahiro KANEDA  

     
    PAPER-Systems and Control

      Vol:
    E82-A No:2
      Page(s):
    380-389

    Lots of self-tuning control schemes have been proposed for tuning the parameters of control systems. Among them, pole-assignment schemes have been widely used for tuning the parameters of control systems with unknown time delays. They are usually classified into two methods, the implicit and the explicit methods according to how to identify the parameters. The latter has an advantage to design a control scheme by taking account of the stability margin and control performance. However, it involves a considerably computational burden to solve a Diophantine equation. A simple scheme is proposed in this paper, which can construct a multivariable self-tuning pole-assignment control system, while taking account of the stability margin and control performance without solving a Diophantine equation.

  • A High-Performance Switch Architecture for Free-Space Photonic Switching Systems

    Shigeo URUSHIDANI  Masayasu YAMAGUCHI  Tsuyoshi YAMAMOTO  

     
    PAPER-Circuit Switching and Cross-Connecting

      Vol:
    E82-C No:2
      Page(s):
    246-253

    Design and evaluation of a high-performance switch architecture for free-space photonic switching systems is described. The switch is constructed of 22 switching elements and employs special multistage interconnection patterns. The connection setup algorithm and the control procedure at the switching elements are based on a "rerouting algorithm."" Performance analysis shows that the blocking probability of the switch is easily controlled by increasing the number of switching stages. Example implementations of this switch are shown in which birefringent plates, polarization controllers, etc. are used.

  • Optimal Robot Self-Localization and Accuracy Bounds

    Kenichi KANATANI  Naoya OHTA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:2
      Page(s):
    447-452

    We discuss optimal estimation of the current location of a mobile robot by matching an image of the scene taken by the robot with the model of the environment. We first present a theoretical accuracy bound and then give a method that attains that bound, which can be viewed as describing the probability distribution of the current location. Using real images, we demonstrate that our method is superior to the naive least-squares method. We also confirm the theoretical predictions of our theory by applying the bootstrap procedure.

  • Joint Low-Complexity Blind Equalization, Carrier Recovery, and Timing Recovery with Application to Cable Modem Transmission

    Cheng-I HWANG  David W. LIN  

     
    PAPER-Communication Systems and Transmission Equipment

      Vol:
    E82-B No:1
      Page(s):
    120-128

    We present a receiver structure with joint blind equalization, carrier recovery, and timing recovery. The blind equalizer employs a decomposition transversal filtering technique which can reduce the complexity of convolution to about a half. We analyze the performance surface of the equalizer cost function and show that the global minima correspond to perfect equalization. We also derive proper initial tap settings of the equalizer for convergence to the global minima. We describe the timing recovery and the carrier recovery methods employed. And we describe a startup sequence to bring the receiver into full operation. The adaptation algorithms for equalization, carrier recovery, and timing recovery are relatively independent, resulting in good operational stability of the overall receiver. Some simulation results for cable-modem type of transmission are presented.

  • Organization and Retrieval of Video Data

    Katsumi TANAKA  Yasuo ARIKI  Kuniaki UEHARA  

     
    REVIEW PAPER

      Vol:
    E82-D No:1
      Page(s):
    34-44

    This paper focuses on the problems how to organize and retrieve video data in an effective manner. First we identify several issues to be solved for the problems. Next, we overview our current research results together with a brief survey in the research area of video databases. We especially describe the following research results obtained by the the Japanese Ministry of Education under Grant-in-Aid for Scientific Research on Priority Area: "Advanced Databases" concerned with organization and retrieval of video data: Instance-Based Video Annotation Models, Self-Organization of Video Data, and A Query Model for Fragmentally Indexed Video.

  • A Floating-Point Divider Using Redundant Binary Circuits and an Asynchronous Clock Scheme

    Hiroaki SUZUKI  Hiroshi MAKINO  Koichiro MASHIKO  

     
    PAPER-Electronic Circuits

      Vol:
    E82-C No:1
      Page(s):
    105-110

    This paper describes a new floating-point divider (FDIV), in which the key features of redundant binary circuits and an asynchronous clock scheme reduce the delay time and area penalty. The redundant binary representation of +1 = (1, 0), 0 = (0, 0), -1 = (0,1) is applied to the all mantissa division circuits. The simple and unified representation reduces circuit delay for the quotient determination. Additionally, the local clock generator circuit for the asynchronous clock scheme eliminates clock margin overhead. The generator circuit guarantees the worst delay-time operation by the feedback loop of the replica delay paths via a C-element. The internal iterative operation by the asynchronous scheme and the modified redundant-binary addition/subtraction circuit keep the area small. The architecture design avoids extra calculation time for the post processes, whose main role is to produce the floating-point status flags. The FDIV core using proposed technologies operates at 42. 1 ns with 0.35 µm CMOS technology and triple metal interconnections. The small core of 13.5 k transistors is laid-out in a 730µm 910 µm area.

  • Buddy Coherence: An Adaptive Granularity Handling Scheme for Page-Based DSM

    Sangbum LEE  Inbum JUNG  Joonwon LEE  

     
    PAPER-Computer Systems

      Vol:
    E81-D No:12
      Page(s):
    1473-1482

    Page-based DSM systems suffer from false sharing since they use a large page as a coherence unit. The optimal page size is dynamically affected by application characteristics. Therefore, a fixed-size page cannot satisfy various applications even if it is small as a cache line size. In this paper we present a software-only coherence protocol called BCP (Buddy Coherence Protocol) to support multiple page sizes that vary adaptively according to the behavior of each application during run time. In BCP, the address of a remote access and the address of the most recent local access is compared. If they are to the different halves of a page, BCP considers it as false sharing and demotes the page to two subpages of equal size. If two contiguous pages belong to the same node, BCP promotes two pages to a superpage to reduce the number of the following coherence activities. We also suggest a mechanism to detect data sharing patterns to optimize the protocol. It detects and keeps the sharing pattern for each page by a state transition mechanism. By referring to those patterns, BCP selectively demotes the page and increases the effectiveness of a demotion. Self-invalidation of the migratorily shared page is also employed to reduce the number of invalidations. Our simulations show that the optimized BCP outperforms almost all the best cases of the write-invalidate protocols using fixed-size pages. BCP improves performance by 42.2% for some applications when compared against the case of the fixed-size page.

  • A Novel Zero-Voltage-Switched Half-Bridge Converter with Active Current-Clamped Transformer

    Koji YOSHIDA  Tamotsu NINOMIYA  

     
    PAPER-Power Supply

      Vol:
    E81-B No:12
      Page(s):
    2544-2552

    A novel zero-voltage-switched half-bridge converter is proposed. This converter achieves the zero-voltage switching while maintaining a constant frequency PWM control. Then the power conversion of high efficiency and low noise is realized at a higher switching frequency. In the experiment, a high efficiency of 83% is achieved for a low output voltage of 3.3 V, an output current of 30 A, and an input-voltage range of 200 to 400 V at the switching frequency of 400 kHz.

  • VP's Priority Based Restoring Function Enhanced Self-healing Algorithm

    Komwut WIPUSITWARAKUN  Hideki TODE  Hiromasa IKEDA  

     
    PAPER-ATM Networks

      Vol:
    E81-B No:11
      Page(s):
    2100-2109

    Network survivability against various unexpected failures is one of indispensable technologies for the B-ISDN infrastructure. Self-healing algorithm is the technique to automatically restore the failed VP's (virtual paths) in the backbone ATM network. Since the B-ISDN transports various kinds of traffic with various levels of priority (Grade of Service: GoS), the effective self-healing algorithm should orderly restore the failed VP's based on the priority of their traversing traffic. This paper proposes the priority based restoring self-healing algorithm, which realizes the priority based restoring function by the two-timer mechanisms and a simple capacity reserving protocol. The simulation results show that the proposed algorithm can schedule the restoration process so that the failed VP's with higher priority are restored before the others with lower priority. In addition, the significant improvement in restoration speed for the highest priority traffic class has been achieved.

561-580hit(726hit)