The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OMP(3945hit)

2001-2020hit(3945hit)

  • Pulse-Width Modulation with Current Uniformization for TFT-OLEDs

    Mutsumi KIMURA  Shigeki SAWAMURA  Masakazu KATO  Yuji HARA  Daisuke SUZUKI  Hiroyuki HARA  Satoshi INOUE  

     
    INVITED PAPER

      Vol:
    E90-C No:11
      Page(s):
    2076-2082

    A novel driving concept, "pulse-width modulation with current uniformization," is proposed for thin-film transistor driven organic light-emitting diode displays (TFT-OLEDs). An example of this driving concept is the combination of "pulse-width modulation with a self-biased inverter" and a "time-ratio grayscale with current uniformization." Its driving operation is confirmed by circuit simulation. It is found that this driving method can compensate the characteristic deviations and degradations of both TFTs and OLEDs and immensely improve luminance uniformity. Finally, its driving operation is also confirmed by an actual pixel equivalent circuit.

  • Improved Variant of Pisarenko Harmonic Decomposition for Single Sinusoidal Frequency Estimation

    Kenneth Wing-Kin LUI  Hing-Cheung SO  

     
    LETTER-Digital Signal Processing

      Vol:
    E90-A No:11
      Page(s):
    2604-2607

    It is well known that Pisarenko's frequency estimate for a single real tone can be computed easily using the sample covariance with lags 1 and 2. In this Letter, we propose to use alternative covariance expressions, which are inspired from the modified covariance (MC) frequency estimator, in Pisarenko's algorithm. Computer simulations are included to corroborate the theoretical development of the variant and to demonstrate its superiority over the MC and Pisarenko's methods.

  • Minimal Code(Error)-Trellis Module Construction for Rate-k/n Convolutional Codes: Extension of Yamada-Harashima-Miyakawa's Construction

    Masato TAJIMA  Koji OKINO  Takashi MIYAGOSHI  

     
    LETTER-Coding Theory

      Vol:
    E90-A No:11
      Page(s):
    2629-2634

    Yamada, Harashima, and Miyakawa proposed to use a trellis constructed based on a syndrome former for the purpose of Viterbi decoding of rate-(n-1)/n convolutional codes. In this paper, we extend their code-trellis construction to general rate-k/n convolutional codes. We show that the extended construction is equivalent to the one proposed by Sidorenko and Zyablov. Moreover, we show that the proposed method can also be applied to an error-trellis construction with minor modification.

  • An Optimal Share Transfer Problem on Secret Sharing Storage Systems

    Toshiyuki MIYAMOTO  Sadatoshi KUMAGAI  

     
    PAPER

      Vol:
    E90-A No:11
      Page(s):
    2458-2464

    We have been developing a secure and reliable distributed storage system, which uses a secret sharing scheme. In order to efficiently store data in the system, this paper introduces an optimal share transfer problem, and proves it to be, generally, NP-hard. It is also shown that the problem can be resolved into a Steiner tree problem. Finally, through computational experiments we perform the comparison of heuristic algorithms for the Steiner tree problem.

  • Hierarchical Decomposition of Depth Map Sequences for Representation of Three-Dimensional Dynamic Scenes

    Sung-Yeol KIM  Yo-Sung HO  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E90-D No:11
      Page(s):
    1813-1820

    In this paper, we propose a new scheme to represent three-dimensional (3-D) dynamic scenes using a hierarchical decomposition of depth maps. In the hierarchical decomposition, we split a depth map into four types of images: regular mesh, boundary, feature point and number-of-layer (NOL) images. A regular mesh image is obtained by down-sampling a depth map. A boundary image is generated by gathering pixels of the depth map on the region of edges. For generating feature point images, we select pixels of the depth map on the region of no edges according to their influence on the shape of a 3-D surface, and convert the selected pixels into images. A NOL image includes structural information to manage the other three images. In order to render a frame of 3-D dynamic scenes, we first generate an initial surface utilizing the information of regular mesh, boundary and NOL images. Then, we enhance the initial surface by adding the depth information of feature point images. With the proposed scheme, we can represent consecutive 3-D scenes successfully within the framework of a multi-layer structure. Furthermore, we can compress the data of 3-D dynamic scenes represented by a mesh structure by a 2-D video coder.

  • A New Single Image Architecture for Distributed Computing Systems

    Min CHOI  Namgi KIM  Seungryoul MAENG  

     
    PAPER

      Vol:
    E90-B No:11
      Page(s):
    3034-3041

    In this paper, we describe a single system image (SSI) architecture for distributed systems. The SSI architecture is constructed through three components: single process space (SPS), process migration, and dynamic load balancing. These components attempt to share all available resources in the cluster among all executing processes, so that the distributed system operates like a single node with much more computing power. To this end, we first resolve broken pipe problems and bind errors on server socket in process migration. Second, we realize SPS based on block process identifier (PID) allocation. Finally, we design and implement a dynamic load balancing scheme. The dynamic load balancing scheme exploits our novel metric, effective tasks, to effectively distribute jobs to a large distributed system. The experimental results show that these three components present scalability, new functionality, and performance improvement in distributed systems.

  • The Optimal H Norm of a Parametric System Achievable Using a Static Feedback Controller

    Takuya KITAMOTO  Tetsu YAMAGUCHI  

     
    PAPER-Systems and Control

      Vol:
    E90-A No:11
      Page(s):
    2496-2509

    In recent years, algorithms based on Computer Algebra ([1]-[3]) have been introduced into a range of control design problems because of the capacity to handle unknown parameters as indeterminates. This feature of algorithms in Computer Algebra reduces the costs of computer simulation and the trial and error process involved, enabling us to design and analyze systems more theoretically with the behavior of given parameters. In this paper, we apply Computer Algebra algorithms to H∞ control theory, representing one of the most successful achievements in post-modern control theory. More specifically, we consider the H∞ norm minimization problem using a state feedback controller. This problem can be formulated as follows: Suppose that we are given a plant described by the linear differential equation = Ax + B1w + B2u, z = Cx + Du, where A,B1,B2,C,D are matrices whose entries are polynomial in an unknown parameter k. We apply a state feedback controller u = -F x to the plant, where F is a design parameter, and obtain the system = (A - B2F)x + B1w, z =(C - DF)x. Our task is to compute the minimum H∞ norm of the transfer function G(s)(=(C - DF)(sI - A + B2F)-1B1) from w to z achieved using a static feedback controller u = -Fx, where F is a constant matrix. In the H∞ control theory, it is only possible to check if there is a controller such that ||G(s)||∞ < γ is satisfied for a given number γ, where ||G(s)||∞ denotes the H∞ norm of the transfer function G(s). Thus, a typical procedure to solve the H∞ optimal problem would involve a bisection method, which cannot be applied to plants with parameters. In this paper, we present a new method of solving the H∞ norm minimization problem that can be applied to plants with parameters. This method utilizes QE (Quantifier Elimination) and a variable elimination technique in Computer Algebra, and expresses the minimum of the H∞ norm as a root of a bivariate polynomial. We also present a numerical example to illustrate each step of the algorithm.

  • Experimental Investigation of an IR-UWB Positioning System with Comparators

    Koichi KITAMURA  Yukitoshi SANADA  

     
    PAPER-UWB

      Vol:
    E90-A No:11
      Page(s):
    2354-2360

    Impulse Radio (IR)-Ultra Wideband (UWB) enables accurate ranging due to very short duration pulses. Therefore, UWB may provide accurate positioning capability. In order to relax the complexity in circuit implementation, UWB system with low resolution analog digital converters (ADCs) has been investigated. In this paper, the accuracy of UWB positioning with comparators is investigated through experiment. The accuracy of positioning with comparators is compared to that with 8 [bit] ADCs, and effectiveness of the system with the comparators is confirmed within the area of 1.81.8 [m].

  • Hierarchically Distributed PCE for End-to-End Bandwidth-Assured VPN Service

    Hiroshi MATSUURA  Kazumasa TAKAMI  

     
    PAPER

      Vol:
    E90-B No:11
      Page(s):
    3042-3051

    In the Next-Generation Network (NGN), accommodating a wide variety of customer networks through virtual private network (VPN) technologies is one of the key issues. In particular, a core network provider has to provide bandwidth-assured and secured data transmission for individual private networks while performing optimal and flexible path selection. We present hierarchically distributed path computation elements (HDPCEs) that enable a virtual private network (VPN) provider to guarantee end-to-end required bandwidth and to maintain the secrecy of the link-state information of each customer from other customers. In previous studies, a VPN provider only considered link states in the provider network and did not consider customer domains connected by the provider network. HDPCEs, which are distributed to customer domains, communicate with an HDPCE for the provider network, and these HDPCEs enable the guarantee of necessary bandwidth for a data transmission from one customer domain to another via a provider network. We propose a new path-selection algorithm in each HDPCE and cooperation scheme to interwork HDPCEs, which are suitable for VPN requirements. In the evaluation, the superiority of HDPCE-based VPN path selection over legacy OSPF-TE-based VPN path selection is demonstrated in two typical VPN models: the dedicated model and shared model.

  • Pseudo Eigenbeam-Space Division Multiplexing (PE-SDM) in Frequency-Selective MIMO Channels

    Hiroshi NISHIMOTO  Toshihiko NISHIMURA  Takeo OHGANE  Yasutaka OGAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:11
      Page(s):
    3197-3207

    In a frequency-selective multiple-input multiple-output (MIMO) channel, the optimum transmission is achieved by beamforming with eigenvectors obtained at each discrete frequency point, i.e., an extension of eigenbeam-space division multiplexing (E-SDM). However, the calculation load of eigenvalue decomposition at the transmitter increases in proportion to the number of frequency points. In addition, frequency-independent eigenvectors increase the delay spread of the effective channel observed at the receiver. In this paper, we propose a pseudo eigenvector scheme for the purpose of mitigating the calculation load and maintaining frequency continuity (or decreasing the delay spread). First, we demonstrate that pseudo eigenvectors reduce the delay spread of the effective channels with low computational complexity. Next, the practical performance of the pseudo E-SDM (PE-SDM) transmission is evaluated. The simulation results show that PE-SDM provides almost the same or better performance compared with E-SDM when the receiver employs a time-windowing-based channel estimation available in the low delay spread cases.

  • A Context-Aware Seamless Interoperator Roaming Management Framework in 4G Networks

    Minsoo LEE  Sehyun PARK  

     
    PAPER

      Vol:
    E90-B No:11
      Page(s):
    3015-3023

    The roaming services with the predefined security associations among the entities in various networks are especially complex. We propose a novel architecture to support future context-aware interoperator roaming services throughout 4G networks by using Roaming Coordinators. We design a secure context management model for the practical use of Smart Cards in the secure roaming services. Our architecture solves the interoperator roaming management problems while minimizing the processing overhead on the mobile nodes.

  • A New Ordered Decision Feedback Equalization Algorithm for Spatial Multiplexing Systems in MIMO Channel

    Wenjie JIANG  Yusuke ASAI  Takeshi ONIZAWA  Satoru AIKAWA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E90-A No:11
      Page(s):
    2546-2555

    In rich scattering environments, multiple antenna systems designed to accomplish spatial multiplexing have enormous potential of lifting the capacity of corresponding multiple input multiple output channels. In this paper, we present a new low complexity algorithm for decision feedback equalization detector in the SM scheme. The basic idea is to reduce the joint optimization problem to separate optimization problems to achieve better performance-complexity tradeoffs. Concretely, we separately optimize the detection order and the detector filters so that the complexity of the entire signal detection task is reduced. The new order search rule approximates the optimal Bell Labs layered space time (BLAST) approach from a geometrical perspective, and the detector filters are derived using a Cholesky based QR decomposition. The new algorithm is able to switch from zero forcing to minimum mean square error without additional operations and the computational effort is a small fraction of that in the optimal BLAST algorithm. Despite its low complexity, the error performance of new detector closely approximates that of the standard BLAST.

  • Method for Visualizing Complicated Structures Based on Unified Simplification Strategy

    Hiroki OMOTE  Kozo SUGIYAMA  

     
    PAPER

      Vol:
    E90-D No:10
      Page(s):
    1649-1656

    In this paper, we present a novel force-directed method for automatically drawing intersecting compound mixed graphs (ICMGs) that can express complicated relations among elements such as adjacency, inclusion, and intersection. For this purpose, we take a strategy called unified simplification that can transform layout problem for an ICMG into that for an undirected graph. This method is useful for various information visualizations. We describe definitions, aesthetics, force model, algorithm, evaluation, and applications.

  • Performance Enhancement of Transport Layer Handover on Single-Homed Mobile Nodes

    Michio HONDA  Yoshifumi NISHIDA  Jin NAKAZAWA  Hideyuki TOKUDA  

     
    PAPER

      Vol:
    E90-B No:10
      Page(s):
    2683-2692

    Many handover techniques in the Internet have been introduced with the development of mobile computing technologies. Although many proposed handover schemes utilize multiple wireless interfaces, having multiple wireless interfaces in a mobile device increases its power consumption, device installation space, and hardware costs. We have been studying handover schemes for mobile nodes with a single wireless interface. To achieve seamless and efficient handover, we focus on Stream Control Transmission Protocol (SCTP) that offers a message-oriented, reliable and connection-oriented delivery transport service. Unlike other transport protocols like TCP, SCTP can provide an end-to-end handover mechanism with multi-homing feature. However, the handover mechanism in the current SCTP causes large handover latency particularly when a mobile node has only one single wireless interface. This paper investigates the current issues of the SCTP handover mechanism, and proposes a new efficient handover scheme based on SCTP, which identifies a communication path as a pair of source and destination address. Additionally, we modified SCTP behavior when an SCTP endpoint received a SET PRIMARY message to change primary destination of peer endpoint. This paper shows that our scheme can reduce the handover latency by two to thirty seconds.

  • On the Effectiveness of Rate-Limiting Methods to Mitigate Distributed DoS (DDoS) Attacks

    Takanori KOMATSU  Akira NAMATAME  

     
    PAPER

      Vol:
    E90-B No:10
      Page(s):
    2665-2672

    It has been widely observed that high-bandwidth traffic aggregates often occur by flooding-based distributed denial-of-service (DDoS) attacks. Several congestion control methods have been proposed for bandwidth controls. These methods are also considered to be important in order to avoid collapse of network services by DDoS attacks. We perform simulation studies of these well-known crowd management methods in order to minimize the damage caused by DDoS attacks with bandwidth control. Internet topologies have many facets in terms of the focus of the observation. Therefore, we need to conduct simulation of DDoS attacks in different Internet topologies, including the tiers model, the transit-stub model, and the Barabasi-Albert model. Using RED, CHOKe, and pushback with ACC as congestion control methods, we evaluate network resistance against DDoS attacks and similar overflow problems.

  • Indifferentiability of Single-Block-Length and Rate-1 Compression Functions

    Hidenori KUWAKADO  Masakatu MORII  

     
    PAPER-Information Security

      Vol:
    E90-A No:10
      Page(s):
    2301-2308

    The security notion of indifferentiability was proposed by Maurer, Renner, and Holenstein in 2004. In 2005, Coron, Dodis, Malinaud, and Puniya discussed the indifferentiability of hash functions. They have shown that the Merkle-Damgård construction is not secure in the sense of indifferentiability. In this paper, we analyze the security of single-block-length and rate-1 compression functions in the sense of indifferentiability. We formally show that all single-block-length and rate-1 compression functions, which include the Davies-Meyer compression function, are insecure. Furthermore, we show how to construct a secure single-block-length and rate-1 compression function in the sense of indifferentiability. This does not contradict our result above.

  • State-Space Analysis of Power Complementary Filters

    Shunsuke KOSHITA  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Analog Signal Processing

      Vol:
    E90-A No:10
      Page(s):
    2265-2271

    This paper presents a new analysis of power complementary filters using the state-space representation. Our analysis is based on the bounded-real Riccati equations that were developed in the field of control theory. Through this new state-space analysis of power complementary filters, we prove that the sum of the controllability/observability Gramians of a pair of power complementary filters is represented by a constant matrix, which is given as a solution to the bounded-real Riccati equations. This result shows that power complementary filters possess complementary properties with respect to the Gramians, as well as the magnitude responses of systems. Furthermore, we derive new theorems on a specific family of power complementary filters that are generated by a pair of invertible solutions to the bounded-real Riccati equations. These theorems show some interesting relationships of this family with respect to the Gramians, zeros, and coefficients of systems. Finally, we give a numerical example to demonstrate our results.

  • Architectural-Level Soft-Error Modeling for Estimating Reliability of Computer Systems

    Makoto SUGIHARA  Tohru ISHIHARA  Kazuaki MURAKAMI  

     
    PAPER-VLSI Design Technology

      Vol:
    E90-C No:10
      Page(s):
    1983-1991

    This paper proposes a soft-error model for accurately estimating reliability of a computer system at the architectural level within reasonable computation time. The architectural-level soft-error model identifies which part of memory modules are utilized temporally and spatially and which single event upsets (SEUs) are critical to the program execution of the computer system at the cycle accurate instruction set simulation (ISS) level. The soft-error model is capable of estimating reliability of a computer system that has several memory hierarchies with it and finding which memory module is vulnerable in the computer system. Reliability estimation helps system designers apply reliable design techniques to vulnerable part of their design. The experimental results have shown that the usage of the soft-error model achieved more accurate reliability estimation than conventional approaches. The experimental results demonstrate that reliability of computer systems depends on not only soft error rates (SERs) of memories but also the behavior of software running in computer systems.

  • An Effective SPICE3 Implementation of the Compound Element Pseudo-Transient Algorithm

    Hong YU  Yasuaki INOUE  Kazutoshi SAKO  Xiaochuan HU  Zhangcai HUANG  

     
    PAPER-Nonlinear Circuits

      Vol:
    E90-A No:10
      Page(s):
    2124-2131

    The compound element pseudo-transient analysis (PTA) algorithm is an effective practical method for finding the DC operating point when the Newton-Raphson method fails. It is able to effectively prevent from the oscillation problems compared with conventional PTA algorithms. In this paper, an effective SPICE3 implementation method for the compound element PTA algorithm is proposed. It has the characteristic of not expanding the Jacobian matrix and not changing the Jacobian matrix structure when the pseudo-transient numerical simulation is being done. Thus a high simulation efficiency is guaranteed. The ability of the proposed SPICE3 implementation to avoid the oscillation problems and the simulation efficiency are demonstrated by examples.

  • An Integrated Sequence Construction of Binary Zero-Correlation Zone Sequences

    Takafumi HAYASHI  

     
    LETTER-Coding Theory

      Vol:
    E90-A No:10
      Page(s):
    2329-2335

    The present paper introduces an integrated construction of binary sequences having a zero-correlation zone. The cross-correlation function and the side-lobe of the auto-correlation function of the proposed sequence set is zero for the phase shifts within the zero-correlation zone. The proposed method enables more flexible design of the binary zero-correlation zone sequence set with respect to its member size, length, and width of zero-correlation zone. Several previously reported sequence construction methods of binary zero-correlation zone sequence sets can be explained as special cases of the proposed method.

2001-2020hit(3945hit)